Monday, March 31, 2014
How I Met Your Mother...
Overlooking the fact that the show should've ultimately been called How I Got With Robin, it's sad to see this great series come to an end. On a personal note, it was a pleasure to work a few times on this sitcom... Terrific crew and hilarious cast! To be on set at the 20th Century Fox studio lot (in Century City, CA) with Cobie Smulders, Josh Radnor, Alyson Hannigan, Jason Segel, Neil Patrick Harris and even the dude who played The Captain (Kyle MacLachlan) was a cool privilege. It's too bad I never worked an episode with The Mother herself (a.k.a. Tracy McConnell, played by Cristin Milioti). Anyways, just thought I'd share these screenshots from the three episodes that I worked on. Farewell, How I Met Your Mother... Your 9-year run was, wait for it, legen—ah, you get the idea.
Sunday, March 30, 2014
Why The L.A. Kings Rock...
Just thought I'd share this cool animated GIF that I found online showing L.A. Kings goalie Jonathan Quick doing a scorpion kick to block the puck (shot by the Winnipeg Jets' Blake Wheeler) as Los Angeles beat the Jets, 4-2, at STAPLES Center yesterday. This awesome defensive move isn't uncommon in National Hockey League games, but this highlight by Quick shows why the Kings are still a formidable team to beat almost two years after they won their first title in the Stanley Cup Finals. Hopefully, we'll see Quick and company making more memorable plays like this come June—if you're a hockey-loving Angeleno, that is. Or an Anaheim Ducks fan who jumped ship (because you just don't want to root for a team that's currently ranked 1st in the NHL's Pacific Division)... Carry on.
Los Angeles Kings / FOX Sports
Los Angeles Kings / FOX Sports
Friday, March 28, 2014
Not Your Typical Asteroid...
ESO / L. Calçada / M. Kornmesser / Nick Risinger
Chariklo Found To Have Two Rings (Press Release - March 26)
Observations at many sites in South America, including ESO’s La Silla Observatory, have made the surprise discovery that the remote asteroid Chariklo is surrounded by two dense and narrow rings. This is the smallest object by far found to have rings and only the fifth body in the Solar System — after the much larger planets Jupiter, Saturn, Uranus and Neptune — to have this feature. The origin of these rings remains a mystery, but they may be the result of a collision that created a disc of debris. The new results are published online in the journal Nature on 26 March 2014.
The rings of Saturn are one of the most spectacular sights in the sky, and less prominent rings have also been found around the other giant planets. Despite many careful searches, no rings had been found around smaller objects orbiting the Sun in the Solar System. Now observations of the distant minor planet (10199) Chariklo as it passed in front of a star have shown that this object too is surrounded by two fine rings.
"We weren’t looking for a ring and didn’t think small bodies like Chariklo had them at all, so the discovery — and the amazing amount of detail we saw in the system — came as a complete surprise!" says Felipe Braga-Ribas (Observatório Nacional / MCTI, Rio de Janeiro, Brazil) who planned the observation campaign and is lead author on the new paper.
Chariklo is the largest member of a class known as the Centaurs and it orbits between Saturn and Uranus in the outer Solar System. Predictions had shown that it would pass in front of the star UCAC4 248-108672 on 3 June 2013, as seen from South America. Astronomers using telescopes at seven different locations, including the 1.54-metre Danish and TRAPPIST telescopes at ESO’s La Silla Observatory in Chile, were able to watch the star apparently vanish for a few seconds as its light was blocked by Chariklo — an occultation.
But they found much more than they were expecting. A few seconds before, and again a few seconds after the main occultation there were two further very short dips in the star’s apparent brightness. Something around Chariklo was blocking the light! By comparing what was seen from different sites the team could reconstruct not only the shape and size of the object itself but also the shape, width, orientation and other properties of the newly discovered rings.
The team found that the ring system consists of two sharply confined rings only seven and three kilometres wide, separated by a clear gap of nine kilometres — around a small 250-kilometre diameter object orbiting beyond Saturn.
"For me, it was quite amazing to realise that we were able not only to detect a ring system, but also pinpoint that it consists of two clearly distinct rings," adds Uffe Gråe Jørgensen (Niels Bohr Institute, University of Copenhagen, Denmark), one of the team. "I try to imagine how it would be to stand on the surface of this icy object — small enough that a fast sports car could reach escape velocity and drive off into space — and stare up at a 20-kilometre wide ring system 1000 times closer than the Moon."
Although many questions remain unanswered, astronomers think that this sort of ring is likely to be formed from debris left over after a collision. It must be confined into the two narrow rings by the presence of small putative satellites.
"So, as well as the rings, it’s likely that Chariklo has at least one small moon still waiting to be discovered," adds Felipe Braga Ribas.
The rings may prove to be a phenomenon that might in turn later lead to the formation of a small moon. Such a sequence of events, on a much larger scale, may explain the birth of our own Moon in the early days of the Solar System, as well as the origin of many other satellites around planets and asteroids.
The leaders of this project are provisionally calling the rings by the nicknames Oiapoque and Chuí, two rivers near the northern and southern extremes of Brazil [9].
Source: European Southern Observatory
****
ESO / L. Calçada / Nick Risinger
Wednesday, March 26, 2014
Finding Planet X...
NASA / Carnegie Institution for Science
Solar System's Edge Redefined (Press Release)
Washington, D.C. — The Solar System has a new most-distant member, bringing its outer frontier into focus.
New work from Carnegie's Scott Sheppard and Chadwick Trujillo of the Gemini Observatory reports the discovery of a distant dwarf planet, called 2012 VP113, which was found beyond the known edge of the Solar System. This is likely one of thousands of distant objects that are thought to form the so-called inner Oort cloud. What's more, their work indicates the potential presence of an enormous planet, perhaps up to 10 times the size of Earth, not yet seen, but possibly influencing the orbit of 2012 VP113, as well as other inner Oort cloud objects.
Their findings are published March 27 in Nature.
The known Solar System can be divided into three parts: the rocky planets like Earth, which are close to the Sun; the gas giant planets, which are further out; and the frozen objects of the Kuiper belt, which lie just beyond Neptune's orbit. Beyond this, there appears to be an edge to the Solar System where only one object, Sedna, was previously known to exist for its entire orbit. But the newly found 2012 VP113 has an orbit that stays even beyond Sedna, making it the furthest known in the Solar System.
"This is an extraordinary result that redefines our understanding of our Solar System," says Linda Elkins-Tanton, director of Carnegie's Department of Terrestrial Magnetism.
Sedna was discovered beyond the Kuiper Belt edge in 2003, and it was not known if Sedna was unique, as Pluto once was thought to be before the Kuiper Belt was discovered. With the discovery of 2012 VP113 it is now clear Sedna is not unique and is likely the second known member of the hypothesized inner Oort cloud, the likely origin of some comets.
2012 VP113’s closest orbit point to the Sun brings it to about 80 times the distance of the Earth from the Sun, a measurement referred to as an astronomical unit or AU. For context, the rocky planets and asteroids exist at distances ranging between .39 and 4.2 AU. Gas giants are found between 5 and 30 AU, and the Kuiper belt (composed of thousands of icy objects, including Pluto) ranges from 30 to 50 AU. In our solar system there is a distinct edge at 50 AU. Only Sedna was known to stay significantly beyond this outer boundary at 76 AU for its entire orbit.
"The search for these distant inner Oort cloud objects beyond Sedna and 2012 VP113 should continue, as they could tell us a lot about how our Solar System formed and evolved," says Sheppard.
Sheppard and Trujillo used the new Dark Energy Camera (DECam) on the NOAO 4 meter telescope in Chile for discovery. DECam has the largest field-of-view of any 4-meter or larger telescope, giving it unprecedented ability to search large areas of sky for faint objects. The Magellan 6.5-meter telescope at Carnegie’s Las Campanas Observatory was used to determine the orbit of 2012 VP113 and obtain detailed information about its surface properties.
From the amount of sky searched, Sheppard and Trujillo determine that about 900 objects with orbits like Sedna and 2012 VP113 and sizes larger than 1000 km may exist and that the total population of the inner Oort cloud is likely bigger than that of the Kuiper Belt and main asteroid belt.
"Some of these inner Oort cloud objects could rival the size of Mars or even Earth. This is because many of the inner Oort cloud objects are so distant that even very large ones would be too faint to detect with current technology", says Sheppard.
Both Sedna and 2012 VP113 were found near their closest approach to the Sun, but they both have orbits that go out to hundreds of AU, at which point they would be too faint to discover. In fact, the similarity in the orbits found for Sedna, 2012 VP113 and a few other objects near the edge of the Kuiper Belt suggests that an unknown massive perturbing body may be shepherding these objects into these similar orbital configurations. Sheppard and Trujillo suggest a Super Earth or an even larger object at hundreds of AU could create the shepherding effect seen in the orbits of these objects, which are too distant to be perturbed significantly by any of the known planets.
There are three competing theories for how the inner Oort cloud might have formed. As more objects are found, it will be easier to narrow down which of these theories is most likely accurate. One theory is that a rogue planet could have been tossed out of the giant planet region and could have perturbed objects out of the Kuiper Belt to the inner Oort cloud on its way out. This planet could have been ejected or still be in the distant solar system today. The second theory is that a close stellar encounter could have put objects into the inner Oort cloud region. A third theory suggests inner Oort cloud objects are captured extra-solar planets from other stars that were near our Sun in its birth cluster.
The outer Oort cloud is distinguished from the inner Oort cloud because in the outer Oort cloud, starting around 1500 AU, the gravity from other nearby stars perturbs the orbits of the objects, causing objects in the outer Oort cloud to have orbits that change drastically over time. Many of the comets we see were objects that were perturbed out of the outer Oort cloud. Inner Oort cloud objects are not highly affected by the gravity of other stars and thus have more stable and more primordial orbits.
Source: Carnegie Institution for Science
****
NASA
Monday, March 24, 2014
Quotes of the Day, Part 2...
-― Anurag Prakash Ray
-― Terry Mark
-― Anmol Andore
-― Ana Chable
-― Melchor Lim
-― Ritu Ghatourey
Saturday, March 22, 2014
Quotes of the Day...
-― Vera Nazarian, The Perpetual Calendar of Inspiration
-― Banana Yoshimoto, The Lake
-― Lucy Christopher
-― Jessica Verday, The Haunted
-― William Shakespeare, Romeo and Juliet
-― Angelina Jolie
Monday, March 17, 2014
The Big Bang Theory...
ESA and the Planck Collaboration
NASA Technology Views Birth of the Universe (Press Release)
Astronomers are announcing today that they have acquired the first direct evidence that gravitational waves rippled through our infant universe during an explosive period of growth called inflation. This is the strongest confirmation yet of cosmic inflation theories, which say the universe expanded by 100 trillion trillion times, in less than the blink of an eye.
The findings were made with the help of NASA-developed detector technology on the BICEP2 telescope at the South Pole, in collaboration with the National Science Foundation.
"Operating the latest detectors in ground-based and balloon-borne experiments allows us to mature these technologies for space missions and, in the process, make discoveries about the universe," said Paul Hertz, NASA's Astrophysics Division director in Washington.
Our universe burst into existence in an event known as the Big Bang 13.8 billion years ago. Moments later, space itself ripped apart, expanding exponentially in an episode known as inflation. Telltale signs of this early chapter in our universe's history are imprinted in the skies, in a relic glow called the cosmic microwave background. Recently, this basic theory of the universe was again confirmed by the Planck satellite, a European Space Agency mission for which NASA provided detector and cooler technology.
But researchers had long sought more direct evidence for inflation in the form of gravitational waves, which squeeze and stretch space.
"Small, quantum fluctuations were amplified to enormous sizes by the inflationary expansion of the universe. We know this produces another type of waves called density waves, but we wanted to test if gravitational waves are also produced," said project co-leader Jamie Bock of NASA's Jet Propulsion Laboratory, Pasadena, Calif., which developed the BICEP2 detector technology. Bock has a joint appointment with the California Institute of Technology, also in Pasadena.
The gravitational waves produced a characteristic swirly pattern in polarized light, called "B-mode" polarization. Light can become polarized by scattering off surfaces, such as a car or pond. Polarized sunglasses reject polarized light to reduce glare. In the case of the cosmic microwave background, light scattered off particles called electrons to become slightly polarized.
The BICEP2 team took on the challenge to detect B-mode polarization by pulling together top experts in the field, developing revolutionary technology and traveling to the best observing site on Earth at the South Pole. The collaboration includes major contributions from Caltech; JPL; Stanford University, Stanford, Calif.; Harvard University, Cambridge, Mass.; and the University of Minnesota, Minneapolis.
As a result of experiments conducted since 2006, the team has been able to produce compelling evidence for the B-mode signal, and with it, the strongest support yet for cosmic inflation. The key to their success was the use of novel superconducting detectors. Superconductors are materials that, when chilled, allow electrical current to flow freely, with zero resistance.
"Our technology combines the properties of superconductivity with tiny structures that can only be seen with a microscope. These devices are manufactured using the same micro-machining process as the sensors in cellphones and Wii controllers," said Anthony Turner, who makes these devices using specialized fabrication equipment at JPL's Microdevices Laboratory.
The B-mode signal is extremely faint. In order to gain the necessary sensitivity to detect the polarization signal, Bock and Turner developed a unique array of multiple detectors, akin to the pixels in modern digital cameras but with the added ability to detect polarization. The whole detector system operates at a frosty 0.25 Kelvin, just 0.45 degrees Fahrenheit above the lowest temperature achievable, absolute zero.
"This extremely challenging measurement required an entirely new architecture," said Bock. "Our approach is like taking a camera and building it on a printed circuit board."
The BICEP2 experiment used 512 detectors, which sped up observations of the cosmic microwave background by 10 times over the team's previous measurements. Their new experiment, already making observations, uses 2,560 detectors.
These and future experiments not only help confirm that the universe inflated dramatically, but are providing theorists with the first clues about the exotic forces that drove space and time apart.
The results of this study have been submitted to the journal Nature.
JPL is managed by the California Institute of Technology in Pasadena for NASA.
Source: Jet Propulsion Laboratory
****
NASA / JPL - Caltech
Saturday, March 15, 2014
Quotes of the Day...
-― Genevieve Aston
-― Sukiyaki Chi
-― Jonah Swans
-― Merak Jonas
-― Bryant H. McGill
-― Marlene Dietrich
Wednesday, March 12, 2014
Photo of the Day, Pt. 2...
Just thought I'd post this since I also haven't blogged about the 1 World Trade Center (1 WTC) in a while...if you overlook this previous entry where I talked about Los Angeles' own Wilshire Grand Center (WGC). The 1 WTC should open later this year or early 2015, while the WGC is set for completion in 2017. Cool.
Courtesy of Facebook
Courtesy of Facebook
Monday, March 10, 2014
Photos of the Day...
Courtesy of Facebook
It's been a while since I posted an entry about the USS Iowa, so just thought I'd share these cool photos that were featured on the Facebook page for the Pacific Battleship Center...which oversees the Iowa in San Pedro, California. Let's hear it for American firepower.
Courtesy of Facebook
Saturday, March 08, 2014
Quotes of the Day...
-― Honore de Balzac
-― Marilyn Monroe
-― Marilyn Monroe
-― Victor Hugo
-― Dale Carnegie
-― H. L. Mencken
Thursday, March 06, 2014
Kepler Update...
NASA / Jack Pfaller
Kepler Marks Five Years in Space (Press Release)
Five years ago today, on March 6, 2009, NASA's Kepler Space Telescope rocketed into the night skies above Cape Canaveral Air Force Station in Florida to find planets around other stars, called exoplanets, in search of potentially habitable worlds.
Since then, Kepler has unveiled a whole new side of our galaxy -- one that is teeming with planets. Because of Kepler we now know that most stars have planets, Earth-sized planets are common, and planets quite unlike those in our solar system exist.
By analyzing Kepler data, scientists have identified more than 3,600 candidates believed to be planets, and verified that 961 of those candidates actually are planets, many as small as Earth. Discoveries made using Kepler now account for more than half of all the known exoplanets.
"During the last five years, Kepler has produced results needed to take the next big step forward in humankind's search for life in our galaxy— providing information needed for future missions that will ultimately determine the atmospheric composition of Earth-sized exoplanets to discover if they could be habitable," said William Borucki, Kepler principal investigator at NASA's Ames Research Center in Moffett Field, Calif.
Kepler's finds include planets that orbit in the habitable zone, the range of distances from a star where the surface temperature of an orbiting planet may be suitable for life-giving liquid water. One example of a habitable zone planet found by the mission is known as Kepler-22b. At 2.4 times the size of Earth, it is thought to be too big to be rocky and support life. Scientists believe other habitable zone planets found by the Kepler mission might be rocky, such as Kepler-62f, which is 40 percent larger in size than Earth.
A twin to Earth -- a planet with the same temperature and size as Earth -- has not yet been identified, but the analysis is far from over as scientists continue to search the Kepler data for the tiny signature of such a planet.
Other Kepler discoveries include hundreds of star systems hosting multiple planets, and have established a new class of planetary system where planets orbit more than one sun.
In August of last year, the mission ended its science observations after a faulty reaction wheel affected the telescope's ability to point precisely. The mission may be able to operate in a different mode, and continue to do science. This next-generation mission proposal, called K2, will be considered for funding by NASA in the 2014 Astrophysics Senior Review of Operating Missions.
Ames is responsible for the Kepler mission concept, ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development. Ball Aerospace & Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes Kepler science data. Kepler is NASA's 10th Discovery Mission and was funded by the agency's Science Mission Directorate.
Source: NASA.Gov
****
NASA
Tuesday, March 04, 2014
The Search for Life on Mars...Kinda
NASA
NASA Scientists Find Evidence of Water in Meteorite, Reviving Debate Over Life on Mars (Press Release - February 27)
A team of scientists at NASA's Johnson Space Center in Houston and the Jet Propulsion Laboratory in Pasadena, Calif., has found evidence of past water movement throughout a Martian meteorite, reviving debate in the scientific community over life on Mars.
In 1996, a group of scientists at Johnson led by David McKay, Everett Gibson and Kathie Thomas-Keprta published an article in Science announcing the discovery of biogenic evidence in the Allan Hills 84001 (ALH84001) meteorite. In this new study, Gibson and his colleagues focused on structures deep within a 30-pound (13.7-kilogram) Martian meteorite known as Yamato 000593 (Y000593). The team reports that newly discovered different structures and compositional features within the larger Yamato meteorite suggest biological processes might have been at work on Mars hundreds of millions of years ago.
The team's findings have been published in the February issue of the journal Astrobiology. The lead author, Lauren White, is based at the Jet Propulsion Laboratory. Co-authors are Gibson, Thomas-Keprta, Simon Clemett and McKay, all based at Johnson. McKay, who led the team that studied the ALH84001 meteorite, died a year ago.
"While robotic missions to Mars continue to shed light on the planet's history, the only samples from Mars available for study on Earth are Martian meteorites," said White. "On Earth, we can utilize multiple analytical techniques to take a more in-depth look into meteorites and shed light on the history of Mars. These samples offer clues to the past habitability of this planet. As more Martian meteorites are discovered, continued research focusing on these samples collectively will offer deeper insight into attributes which are indigenous to ancient Mars. Furthermore, as these meteorite studies are compared to present day robotic observations on Mars, the mysteries of the planet's seemingly wetter past will be revealed."
Analyses found that the rock was formed about 1.3 billion years ago from a lava flow on Mars. Around 12 million years ago, an impact occurred on Mars which ejected the meteorite from the surface of Mars. The meteorite traveled through space until it fell in Antarctica about 50,000 years ago.
The rock was found on the Yamato Glacier in Antarctica by the Japanese Antarctic Research Expedition in 2000. The meteorite was classified as a nakhlite, a subgroup of Martian meteorites. Martian meteoritic material is distinguished from other meteorites and materials from Earth and the moon by the composition of the oxygen atoms within the silicate minerals and trapped Martian atmospheric gases.
The team found two distinctive sets of features associated with Martian-derived clay. They found tunnel and micro-tunnel structures that thread their way throughout Yamato 000593. The observed micro-tunnels display curved, undulating shapes consistent with bio-alteration textures observed in terrestrial basaltic glasses, previously reported by researchers who study interactions of bacteria with basaltic materials on Earth.
The second set of features consists of nanometer- to-micrometer-sized spherules that are sandwiched between layers within the rock and are distinct from carbonate and the underlying silicate layer. Similar spherical features have been previously seen in the Martian meteorite Nakhla that fell in 1911 in Egypt. Composition measurements of the Y000593 spherules show that they are significantly enriched in carbon compared to the nearby surrounding iddingsite layers.
A striking observation is that these two sets of features in Y000593, recovered from Antarctica after about 50,000 years residence time, are similar to features found in Nakhla, an observed fall collected shortly after landing.
The authors note that they cannot exclude the possibility that the carbon-rich regions in both sets of features may be the product of abiotic mechanisms: however, textural and compositional similarities to features in terrestrial samples, which have been interpreted as biogenic, imply the intriguing possibility that the Martian features were formed by biotic activity.
"The unique features displayed within the Martian meteorite Yamato 000593 are evidence of aqueous alterations as seen in the clay minerals and the presence of carbonaceous matter associated with the clay phases which show that Mars has been a very active body in its past," said Gibson. "The planet is revealing the presence of an active water reservoir that may also have a significant carbon component.
"The nature and distribution of Martian carbon is one of the major goals of the Mars Exploration Program. Since we have found indigenous carbon in several Mars meteorites, we cannot overstate the importance of having Martian samples available to study in earth-based laboratories. Furthermore, the small sizes of the carbonaceous features within the Yamato 000593 meteorite present major challenges to any analyses attempted by remote techniques on Mars," Gibson added.
"This is no smoking gun," said JPL's White. "We can never eliminate the possibility of contamination in any meteorite. But these features are nonetheless interesting and show that further studies of these meteorites should continue."
Source: Jet Propulsion Laboratory
****
NASA
Sunday, March 02, 2014
The 86th Annual Academy Awards...
After finding out through the In Memoriam segment of tonight's Oscars telecast that AC Lyles passed away (on September 27 of last year), I felt like sharing this great group photo that several Studio Pages and I took with the well-known producer at Paramount Pictures' Christmas party in 2005. Mr. Lyles was a really cool guy—this pic shows one of many highlights that I had working at this awesome studio almost a decade ago. I was a page at Paramount from July of '05 to July of '06... Would've stayed longer, but the page program was a one-year employment only (though I know some pages who worked there for a year-and-a-half, hah). It's all good.
Oh, and props to Gravity for taking home seven awards tonight! Never watched 12 Years A Slave, but congrats to it for winning Best Picture. Carry on.
Saturday, March 01, 2014
The Sunset From San Pedro...
Just thought I'd share these cellphone pics that I took as the Sun sank below the horizon when I worked in San Pedro, California, last November. The first and third photos show Catalina Island as it was partially concealed by a marine layer more than 20 miles offshore. For pics that I took when I traveled to Catalina last October (on my birthday), click on the link below.
LINK: Click here for images from my October 2013 trip to Catalina Island
Subscribe to:
Posts (Atom)