Thursday, August 15, 2019

Support My Film THE BROKEN TABLE on Kickstarter!


ABOVE: A concept trailer for The Broken Table.

Two days ago, I launched a crowdfunding campaign for my short film The Broken Table...which is a psychological thriller about a man whose mundane act of fixing a damaged piece of furniture at home isn’t what it seems. This film has a crazy twist at the end...which I obviously won't reveal, except to say that my friends who read the script asked me, "What comes next?" For those of you reading this Blog entry, click on the link below and make a generous contribution to this project and find out! You can donate as little as $1, $5, $15 or $25—or as high as $1,000 if you wanna be credited as an Executive Producer plus get other perks! Guess with pledge level I actually want you to choose, heheh. (HINT: I don't mind putting another Producer credit at the end of the film!) Anyways, click on this link:

https://kickstarter.com/projects/parman/the-broken-table-a-short-film

The Kickstarter campaign will go from August 13 to September 13, and end at 9 AM, PDT that Friday. Even though there are still 28 days left, donate now! My crew and I are planning to shoot The Broken Table less than two months later...on November 2 and 3. So donate now!

PS: My awesome pitch video (with its random Family Guy-ish cut scenes) on the Kickstarter page won't reflect the awesomely sinister nature of the actual film! Carry on.

ABOVE: An animated promo for The Broken Table...featuring a snippet of music that will be used in the actual film.

Monday, August 05, 2019

Testing the Eyes on America's Next Mars Rover...

Engineers test several cameras that were recently installed on the Mars 2020 rover at NASA's Jet Propulsion Laboratory near Pasadena, California...on July 23, 2019.
NASA / JPL - Caltech

NASA 'Optometrists' Verify Mars 2020 Rover's 20/20 Vision (News Release)

Equipped with visionary science instruments, the Mars 2020 rover underwent an "eye" exam after several cameras were installed on it. The rover contains an armada of imaging capabilities, from wide-angle landscape cameras to narrow-angle high-resolution zoom lens cameras.

"We completed the machine-vision calibration of the forward-facing cameras on the rover," said Justin Maki, chief engineer for imaging and the imaging scientist for Mars 2020 at JPL. "This measurement is critical for accurate stereo vision, which is an important capability of the vehicle."

To perform the calibration, the 2020 team imaged target boards that feature grids of dots, placed at distances ranging from 1 to 44 yards (1 to 40 meters) away. The target boards were used to confirm that the cameras meet the project's requirements for resolution and geometric accuracy. The cameras tested included two Navcams, four Hazcams, the SuperCam and the two Mastcam-Z cameras.

"We tested every camera on the front of the rover chassis and also those mounted on the mast," said Maki. "Characterizing the geometric alignment of all these imagers is important for driving the vehicle on Mars, operating the robotic arm and accurately targeting the rover's laser."

In the coming weeks, the imagers on the back of the rover body and on the turret at the end of the rover's arm will undergo similar calibration.

Mounted on the rover's remote sensing mast, the Navcams (navigation cameras) will acquire panoramic 3D image data that will support route planning, robotic-arm operations, drilling and sample acquisition. The Navcams can work in tandem with the Hazcams (hazard-avoidance cameras) mounted on the lower portion of the rover chassis to provide complementary views of the terrain to safeguard the rover against getting lost or crashing into unexpected obstacles. They'll be used by software enabling the Mars 2020 rover to perform self-driving over the Martian terrain.

Along with its laser and spectrometers, SuperCam's imager will examine Martian rocks and soil, seeking organic compounds that could be related to past life on Mars. The rover's two Mastcam-Z high-resolution cameras will work together as a multispectral, stereoscopic imaging instrument to enhance the Mars 2020 rover's driving and core-sampling capabilities. The Mastcam-Z cameras will also enable science team members to observe details in rocks and sediment at any location within the rover's field of view, helping them piece together the planet's geologic history.

JPL is building and will manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency's headquarters in Washington. NASA will use Mars 2020 and other missions, including to the Moon, to prepare for human exploration of the Red Planet. The agency intends to establish a sustained human presence on and around the Moon by 2028 through NASA's Artemis lunar exploration plans.

To submit your name to travel to Mars with NASA's 2020 mission and obtain a souvenir boarding pass to the Red Planet, go here by Sept. 30, 2019:

https://go.nasa.gov/Mars2020Pass

Source: Jet Propulsion Laboratory

Wednesday, July 24, 2019

LightSail 2 Has Spread Its Wings in Orbit!

An image that was taken of LightSail 2's solar sail after it was successfully deployed on July 23, 2019.
The Planetary Society

LightSail 2 Successfully Deploys Solar Sail (Press Release)

The Planetary Society’s LightSail 2 spacecraft has successfully deployed the large, aluminized Mylar sail it will use to raise its orbit solely with sunlight.

Flight controllers at Cal Poly San Luis Obispo in California commanded the spacecraft to deploy its solar sails yesterday at about 11:47 PDT (18:47 UTC). Images captured during the deployment sequence and downloaded today show the 32-square-meter sail, which is about the size of a boxing ring, deploying as the spacecraft flew south of the continental United States.

Sail deployment marks a major milestone for the LightSail 2 mission, which aims to demonstrate solar sailing as a viable method of propulsion for CubeSats—small, standardized satellites that have lowered the cost of space exploration.

“Yesterday, we successfully set sail on beams of sunlight,” said Bill Nye, CEO of The Planetary Society. “Thanks to our team and our tens of thousands of supporters around the world, the dream started by The Planetary Society’s founders more than 4 decades ago has taken flight.”

Bruce Betts, Planetary Society chief scientist and LightSail program manager, added, “We’re ecstatic! The mission team has worked for years to get to this moment when we can start solar sailing.”

Following the start of sail deployment on 23 July, telemetry from LightSail 2 showed the spacecraft’s small motor was rotating properly, extending four, 4-meter cobalt-alloy booms from their central spindle. The booms unwind like carpenter’s tape measures and are attached to 4 triangular sail sections that together form the square solar sail.

Though the motor activity itself was a good indicator of success, confirmation that the sails deployed successfully was only possible via imagery from LightSail 2’s dual cameras. The cameras have 185-degree fields of view, and together can image the entire sail from the main LightSail bus, which is about the size of a loaf of bread.

“The successful deployment of the solar sail and the onset of sail control completes our critical post-launch phase,” said LightSail 2 project manager David Spencer. “Now we are prepared for the solar sail's mission, to track how the orbit changes and evaluate solar sailing performance.”

The deployment milestone comes 4 weeks after LightSail 2 launched from Kennedy Space Center, Florida aboard a SpaceX Falcon Heavy rocket, and 3 weeks after the Georgia Tech student-built Prox-1 spacecraft deployed LightSail 2 into orbit. The mission team spent a week checking out the spacecraft’s systems before rescheduling sail deployment to allow extra time for testing and tuning the attitude control system.

Preliminary data shows LightSail 2 is already turning its solar sail broadside to the Sun once per orbit, giving the spacecraft a gentle push no stronger than the weight of a paperclip. Solar photons have no mass, but they have momentum, and as they reflect off the solar sail, some of that momentum is transferred and creates thrust. While this thrust is slight, it is continuous and over time will raise LightSail 2’s orbit.

The orbit-raising portion of the mission will last about 1 month. LightSail 2 does not have the capability to circularize its orbit—as one side of the spacecraft’s orbit raises due to solar sailing, the other side will dip lower into Earth’s atmosphere, until atmospheric drag overcomes the slight force from solar sailing. LightSail 2 is expected to reenter the atmosphere in roughly 1 year.

Source: The Planetary Society

****

A mini-DVD bearing the names of over 23,300 Kickstarter backers (including me) is visible on the LightSail 2 spacecraft...near the left side of this image.
The Planetary Society

My certificate for supporting the LightSail 2 mission through Kickstarter.

Wednesday, July 17, 2019

Only 365 Days Till America's Next Robotic Rover Heads to the Red Planet...

Engineers install the sensor turret to the Mars 2020 rover's robotic arm at NASA's Jet Propulsion Laboratory near Pasadena, California...on July 11, 2019.
NASA / JPL - Caltech

Mars 2020 Rover: T-Minus One Year and Counting (News Release)

The launch period for NASA's Mars 2020 rover opens exactly one year from today, July 17, 2020, and extends through Aug. 5, 2020. The mission will launch from Cape Canaveral Air Force Station in Florida and land at Mars' Jezero Crater on Feb. 18, 2021.

"Back when we started this project in 2013, we came up with a timeline to chart mission progress," said John McNamee, Mars 2020 project manager at NASA's Jet Propulsion Laboratory near Pasadena, California. "That every single major spacecraft component on a project with this level of innovation is synching right now with that timeline is a testament to the innovation and perseverance of a great team."

In this image, taken on July 11, 2019, engineers at JPL install a sensor-filled turret on the end of the rover's 7-foot-long (2.1-meter-long) robotic arm. The rover's turret includes HD cameras, the Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) science instrument, the Planetary Instrument for X-ray Lithochemistry (PIXL), and a percussive drill and coring mechanism.

On Mars, the arm and turret will work together, allowing the rover to work as a human geologist would: by reaching out to interesting geologic features, scraping, analyzing and even collecting them for further study via Mars 2020's Sample Caching System, which includes 17 motors and will collect samples of Martian rock and soil that will be returned to Earth by a future mission.

JPL is building and will manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency's headquarters in Washington. NASA will use Mars 2020 and other missions, including to the Moon, to prepare for human exploration of the Red Planet. The agency intends to establish a sustained human presence on and around the Moon by 2028 through NASA's Artemis lunar exploration plans.

If you want to send your name to Mars with NASA's 2020 mission, you can do so until Sept. 30, 2019. Add your name to the list and obtain a souvenir boarding pass to Mars here:

https://go.nasa.gov/Mars2020Pass

Source: Jet Propulsion Laboratory

****

An artist's concept of NASA's Mars 2020 rover studying the surface of the Red Planet.
NASA / JPL - Caltech

Thursday, July 11, 2019

Hayabusa2 Has Collected More Samples from the Surface of Asteroid Ryugu!

A snapshot of Hayabusa2's sampler horn making contact with the surface of asteroid Ryugu...as seen from the spacecraft's small monitor camera on July 11, 2019.
JAXA

Success of the Second Touchdown of Asteroid Explorer Hayabusa 2 (Press Release)

The Japan Aerospace Exploration Agency (JAXA) performed a series of operations for the second touchdown of Asteroid Explorer Hayabusa2 on the Ryugu asteroid and the collection of its soil samples.

From the data sent from Hayabusa2, it has been confirmed that the touchdown sequence, including the discharge of a projectile for sampling, was completed successfully. Hayabusa2 is functioning normally, and thus the second touchdown ended with success.

Source: Japan Aerospace Exploration Agency

****

Saturday, July 06, 2019

The Brow Has Officially Joined the Lake Show! (PS: Screw You, Kawhi...)

Anthony Davis officially became a Los Angeles Laker on July 6, 2019.

Lakers Acquire Anthony Davis (Press Release)

The Los Angeles Lakers have acquired forward Anthony Davis from the New Orleans Pelicans in exchange for Lonzo Ball, Josh Hart, Brandon Ingram, the draft rights to De'Andre Hunter, two first round picks, a first-round pick swap right and cash. As part of the trade, the Lakers also sent Isaac Bonga, Jemerrio Jones, Moritz Wagner and a future second round draft pick to the Wizards, who in return, sent cash consideration to the Pelicans.

"Anthony Davis is arguably the most dominant all-around young player in today's NBA," said Lakers general manager Rob Pelinka. "Anthony represents everything we stand for, with his unwavering commitment to excellence as both a person and athlete. This is a historic moment for the Lakers franchise, and we couldn't be more proud to have him."

A three-time All-NBA First Team honoree (2015, ‘17, ‘18), six-time NBA All-Star and one-time Olympic Gold Medalist for Team USA (2012), Davis has averaged 23.7 points (.517 FG%), 10.5 rebounds, 2.4 blocks, 2.1 assists and 1.4 steals over his seven-year career in the NBA.

Last season, Davis played and started in 56 games for New Orleans, averaging 25.9 points (.517 FG%), 12.0 rebounds, 3.9 assists, 2.4 blocks and 1.6 steals in 33.0 minutes. A three-time league-leader in blocks, Davis was named to the NBA’s All-Defensive First Team in 2018, while earning Second Team honors in 2015 and 2017. Additionally, he has been voted Western Conference Player of the Month twice, coming in back-to-back months in February and March of 2018, and has earned the league’s Player of the Week award on five occasions. In 2017, he was named Most Valuable Player of the NBA All-Star Game after scoring a record 52 points in the game.

Originally from Chicago, IL, Davis was selected first overall in the 2012 NBA Draft and went on to earn First Team All-Rookie honors after totaling 20 double-doubles with averages of 13.5 points, 8.2 rebounds, 1.8 blocks, 1.2 steals and 1.0 assist per game.

In his lone season at Kentucky, Davis was voted as the consensus National Player of the Year and a First Team All-American after leading the Wildcats to the 2012 NCAA Championship. The NABC and SEC Defensive Player of the Year was also SEC Player of the Year, tallying 14.2 points (.623 FG%), 10.4 rebounds, 4.7 blocks, 1.4 steals and 1.3 assists in 40 games.

Source: Lakers.com

****

The 2019-'20 team roster for the Los Angeles Lakers.

Sunday, June 30, 2019

Photos of the Day: A Boat Trip Off the Coast of Dana Point, CA...

A snapshot of two dolphins swimming through the water off the coast of Dana Point, California...on June 11, 2019.

Just thought I'd end this month with these photos—taken with my Nikon D3300 camera—that I shot during a whale-watching trip I went on almost three weeks ago (on June 11). I didn't see any whales on this excursion (though other folks on my boat say that they spotted the tail fin of a whale protruding from the water several miles away), but I did take lots of images of a pod of dolphins that surrounded my boat as it made its way out to sea. And before the boat returned to its dock at Dana Point harbor in Orange County, CA, the captain parked the vessel near a buoy where a couple of sea lions and a lone sea gull were resting on during that warm spring day. Of course, I didn't really need to tell you this when you could've just checked out all of the pics in this Blog entry!

A sea lion gazes at my camera while sitting on a buoy anchored off the coast of Dana Point, California...on June 11, 2019.

Will I go whale-watching again, you ask? Definitely! Though I'll probably wait till October 4 (my birthday) to head back to Orange County. To paraphrase Wayne Campbell (Mike Myers) from the 1992 movie Wayne's World: "I will take whale photos with my DSLR camera... Oh yes, I will." Yep, that was cheesy. Happy Sunday!

A snapshot of a dolphin off the coast of Dana Point, California...on June 11, 2019.

A snapshot of two dolphins (with the dorsal fin of a third dolphin visible near the left side of this photo) swimming off the coast of Dana Point, California...on June 11, 2019.

A snapshot of a couple of dolphins swimming off the coast of Dana Point, California...on June 11, 2019.

A snapshot of a dolphin off the coast of Dana Point, California...on June 11, 2019.

A group of sea lions and a lone sea gull rest atop a buoy anchored off the coast of Dana Point, California...on June 11, 2019.

A group of sea lions rest atop a buoy anchored off the coast of Dana Point, California...on June 11, 2019.

A sea lion pup swims near the base of a buoy anchored off the coast of Dana Point, California...on June 11, 2019.

A sea lion sleeps atop a buoy anchored off the coast of Dana Point, California...on June 11, 2019.

Friday, June 28, 2019

Photo of the Day: The Mars 2020 Rover Gets a New Limb!

Engineers install the robotic arm on the Mars 2020 rover at NASA's Jet Propulsion Laboratory near Pasadena, California...on June 21, 2019.
NASA / JPL - Caltech

Mars 2020 Rover's 7-Foot-Long Robotic Arm Installed (News Release)

In this image, taken on June 21, 2019, engineers at NASA's Jet Propulsion Laboratory near Pasadena, California, install the main robotic arm on the Mars 2020 rover. (A smaller arm to handle Mars samples will be installed inside the rover as well.) The main arm includes five electrical motors and five joints (known as the shoulder azimuth joint, shoulder elevation joint, elbow joint, wrist joint and turret joint). Measuring 7 feet (2.1 meters) long, the arm will allow the rover to work as a human geologist would: by holding and using science tools with its turret, which is essentially its "hand."

"You have to give a hand to our rover arm installation team," said Ryan van Schilifgaarde, a support engineer at JPL for Mars 2020 assembly. "They made an extremely intricate operation look easy. We're looking forward to more of the same when the arm will receive its turret in the next few weeks."

The rover's turret will include high-definition cameras, science instruments, and a percussive drill and coring mechanism. Those tools will be used to analyze and collect samples of Martian rock and soil, which will be cached on the surface for return to Earth by a future mission.

Mars 2020 will launch from Cape Canaveral Air Force Station in Florida in July of 2020. It will land at Jezero Crater on Feb. 18, 2021.

Charged with returning astronauts to the Moon by 2024, NASA's Artemis lunar exploration plans will establish a sustained human presence on and around the Moon by 2028. We will use what we learn on the Moon to prepare to send astronauts to Mars.

JPL is building and will manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency's headquarters in Washington.

If you want to send your name to Mars with NASA's 2020 mission, you can do so until Sept. 30, 2019. Add your name to the list and obtain a souvenir boarding pass to Mars here:

https://go.nasa.gov/Mars2020Pass

Source: Jet Propulsion Laboratory

Thursday, June 27, 2019

Dragonfly Is Officially Heading to Titan!

An artist's concept of the Dragonfly rotorcraft on the surface of Saturn's moon Titan.
Johns Hopkins APL

NASA Selects Flying Mission to Study Titan for Origins, Signs of Life (Press Release)

NASA has announced that our next destination in the solar system is the unique, richly organic world Titan. Advancing our search for the building blocks of life, the Dragonfly mission will fly multiple sorties to sample and examine sites around Saturn’s icy moon.

Dragonfly will launch in 2026 and arrive in 2034. The rotorcraft will fly to dozens of promising locations on Titan looking for prebiotic chemical processes common on both Titan and Earth. Dragonfly marks the first time NASA will fly a multi-rotor vehicle for science on another planet; it has eight rotors and flies like a large drone. It will take advantage of Titan’s dense atmosphere – four times denser than Earth’s – to become the first vehicle ever to fly its entire science payload to new places for repeatable and targeted access to surface materials.

Titan is an analog to the very early Earth, and can provide clues to how life may have arisen on our planet. During its 2.7-year baseline mission, Dragonfly will explore diverse environments from organic dunes to the floor of an impact crater where liquid water and complex organic materials key to life once existed together for possibly tens of thousands of years. Its instruments will study how far prebiotic chemistry may have progressed. They also will investigate the moon’s atmospheric and surface properties and its subsurface ocean and liquid reservoirs. Additionally, instruments will search for chemical evidence of past or extant life.

“With the Dragonfly mission, NASA will once again do what no one else can do,” said NASA Administrator Jim Bridenstine. “Visiting this mysterious ocean world could revolutionize what we know about life in the universe. This cutting-edge mission would have been unthinkable even just a few years ago, but we’re now ready for Dragonfly’s amazing flight.”

Dragonfly took advantage of 13 years’ worth of Cassini data to choose a calm weather period to land, along with a safe initial landing site and scientifically interesting targets. It will first land at the equatorial “Shangri-La” dune fields, which are terrestrially similar to the linear dunes in Namibia in southern Africa and offer a diverse sampling location. Dragonfly will explore this region in short flights, building up to a series of longer “leapfrog” flights of up to 5 miles (8 kilometers), stopping along the way to take samples from compelling areas with diverse geography. It will finally reach the Selk impact crater, where there is evidence of past liquid water, organics – the complex molecules that contain carbon, combined with hydrogen, oxygen, and nitrogen – and energy, which together make up the recipe for life. The lander will eventually fly more than 108 miles (175 kilometers) – nearly double the distance traveled to date by all the Mars rovers combined.

“Titan is unlike any other place in the solar system, and Dragonfly is like no other mission,” said Thomas Zurbuchen, NASA’s associate administrator for Science at the agency’s Headquarters in Washington. “It’s remarkable to think of this rotorcraft flying miles and miles across the organic sand dunes of Saturn’s largest moon, exploring the processes that shape this extraordinary environment. Dragonfly will visit a world filled with a wide variety of organic compounds, which are the building blocks of life and could teach us about the origin of life itself.”

Titan has a nitrogen-based atmosphere like Earth. Unlike Earth, Titan has clouds and rain of methane. Other organics are formed in the atmosphere and fall like light snow. The moon’s weather and surface processes have combined complex organics, energy, and water similar to those that may have sparked life on our planet.

Titan is larger than the planet Mercury and is the second largest moon in our solar system. As it orbits Saturn, it is about 886 million miles (1.4 billion kilometers) away from the Sun, about 10 times farther than Earth. Because it is so far from the Sun, its surface temperature is around -290 degrees Fahrenheit (-179 degrees Celsius). Its surface pressure is also 50 percent higher than Earth’s.

Dragonfly was selected as part of the agency’s New Frontiers program, which includes the New Horizons mission to Pluto and the Kuiper Belt, Juno to Jupiter, and OSIRIS-REx to the asteroid Bennu. Dragonfly is led by Principal Investigator Elizabeth Turtle, who is based at Johns Hopkins University’s Applied Physics Laboratory in Laurel, Maryland. New Frontiers supports missions that have been identified as top solar system exploration priorities by the planetary community. The program is managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Planetary Science Division in Washington.

“The New Frontiers program has transformed our understanding of the solar system, uncovering the inner structure and composition of Jupiter’s turbulent atmosphere, discovering the icy secrets of Pluto’s landscape, revealing mysterious objects in the Kuiper belt, and exploring a near-Earth asteroid for the building blocks of life,” said Lori Glaze, director of NASA’s Planetary Science Division. “Now we can add Titan to the list of enigmatic worlds NASA will explore.”

****

An artist's concept of the Dragonfly rotorcraft flying above the surface of Saturn's moon Titan.
Johns Hopkins APL


Tuesday, June 25, 2019

LightSail 2 Finally Reaches for the Cosmos...

Carrying 24 satellites (including The Planetary Society's LightSail 2 spacecraft) as part of the U.S. Air Force's STP-2 mission, SpaceX's Falcon Heavy rocket lifts off from Launch Complex 39A at NASA's Kennedy Space Center in Florida...on June 25, 2019 (Eastern Time).
SpaceX

The Planetary Society Celebrates Launch of LightSail 2 (Press Release)

Bill Nye, CEO: "We are democratizing space."

Cape Canaveral, FL (June 25, 2019) LightSail 2 is officially in space! The Planetary Society's solar sail CubeSat lifted off from Kennedy Space Center, Florida on 25 June at 02:30 EDT (06:30 UTC). The late-night launch came courtesy of SpaceX's triple-booster Falcon Heavy rocket, which was carrying 24 spacecraft for the U.S. Air Force's STP-2 mission.

Launch was originally scheduled to occur at 23:30 EDT on 24 June (03:30 UTC on 25 June). SpaceX delayed the liftoff time by 3 hours to complete additional ground system checkouts.

During its ride to orbit, LightSail 2 was tucked safely inside its Prox-1 carrier spacecraft. The Falcon Heavy upper stage's payload stack released Prox-1 about an hour and 20 minutes after liftoff, at an altitude of roughly 720 kilometers. Prox-1 will house LightSail 2 for 1 week, allowing time for other vehicles released into the same orbit to drift apart so each can be identified individually. LightSail 2 deployment is set for 2 July.

"After that spectacular nighttime launch, the flight team is ready to operate the LightSail 2 spacecraft," said LightSail 2 project manager David Spencer. "We will be listening for the radio signal in a week, following the release of LightSail 2 from Prox-1."

Bruce Betts, Planetary Society chief scientist and LightSail 2 program manager, added, "After years of hard work we are ecstatic with the launch and looking forward to doing some solar sailing."

In a video message to Planetary Society members, CEO Bill Nye, said, "The SpaceX Falcon Heavy took our spacecraft up and on orbit, thanks to you. Thank you all so much. We are advancing space science and exploration. We are democratizing space. We are innovating."

About 500 Planetary Society members and supporters were on hand at the Kennedy Space Center Apollo-Saturn V Center to watch their crowdfunded spacecraft take flight. Sound from the Falcon Heavy's 27 engines rumbled through the viewing area, as the rocket blazed high into the sky before starting its arc out over the Atlantic Ocean. Both of the rocket's side boosters flew back to Cape Canaveral for upright landings, creating sonic booms that delighted the raucous crowd.

SpaceX's live feed from mission control in Hawthorne, California followed the rocket's center booster as it attempted to land on the drone ship Of Course I Still Love You. The booster’s exhaust plume briefly appeared on camera before apparently crashing into the ocean. The landing was not a requirement for mission success.

Meanwhile, the upper stage blasted on to its first stop, an orbit roughly 865 by 300 kilometers above Earth. There, it deployed several CubeSats and a small satellite before lighting its engine again and flying to a circular orbit of about 720 kilometers. Prox-1 was the first spacecraft off the rocket there.

LightSail 2 team members will soon converge at Cal Poly San Luis Obispo in California, where the spacecraft’s mission control is located. Once LightSail 2 is released from Prox-1 on 2 July, the team will spend several days checking out the CubeSat’s systems before commanding its dual-sided solar panels to deploy. Following that, the spacecraft's solar sails will be deployed, roughly 2 weeks in total from launch day.

Source: The Planetary Society

****

The Falcon Heavy rocket's two side boosters are about to touch down on their respective landing zones at Cape Canaveral, Florida...on June 25, 2019 (Eastern Time).
SpaceX

A mini-DVD bearing the names of over 23,300 Kickstarter backers (including me) is visible on the LightSail 2 spacecraft...near the left side of this image.
The Planetary Society

My certificate for supporting the LightSail 2 mission through Kickstarter.