Thursday, March 05, 2020

Meet PERSEVERANCE: The Mars 2020 Rover Finally Has An Official Name!

The Perseverance Mars rover undergoes launch processing at NASA's Kennedy Space Center in Florida.
NASA

Virginia Middle School Student Earns Honor of Naming NASA's Next Mars Rover (News Release)

NASA chose seventh-grader from Virginia as winner of the agency's "Name the Rover" essay contest. Alexander Mather's entry for "Perseverance" was voted tops among 28,000 entries.

NASA's next Mars rover has a new name - Perseverance.

The name was announced Thursday by Thomas Zurbuchen, associate administrator of the Science Mission Directorate, during a celebration at Lake Braddock Secondary School in Burke, Virginia. Zurbuchen was at the school to congratulate seventh grader Alexander Mather, who submitted the winning entry to the agency's "Name the Rover" essay contest, which received 28,000 entries from K-12 students from every U.S. state and territory.

"Alex's entry captured the spirit of exploration," said Zurbuchen. "Like every exploration mission before, our rover is going to face challenges, and it's going to make amazing discoveries. It's already surmounted many obstacles to get us to the point where we are today - processing for launch. Alex and his classmates are the Artemis Generation, and they're going to be taking the next steps into space that lead to Mars. That inspiring work will always require perseverance. We can't wait to see that nameplate on Mars."

Perseverance is the latest in a long line of Red Planet rovers to be named by school-age children, from Sojourner in 1997 to the Spirit and Opportunity rovers, which landed on Mars in 2004, to Curiosity, which has been exploring Mars since 2012. In each case, the name was selected following a nationwide contest.

The contest that resulted in Alex's winning entry of Perseverance began Aug. 28, 2019. Nearly 4,700 volunteer judges - educators, professionals and space enthusiasts from around the country - reviewed submissions to help narrow the pool down to 155 semifinalists. Once that group was whittled down to nine finalists, the public had five days to weigh in on their favorites, logging more than 770,000 votes online, with the results submitted to NASA for consideration. The nine finalists also talked with a panel of experts, including Lori Glaze, director of NASA's Planetary Science Division; NASA astronaut Jessica Watkins; rover driver Nick Wiltsie at NASA's Jet Propulsion Laboratory in California; and Clara Ma, who, as a sixth-grade student in 2009, named Curiosity.

Up until two years ago, Mather was more interested in video games than space. That all changed in the summer of 2018, when he visited Space Camp in Alabama. From his first glimpse of a Saturn V - the rocket that launched the Apollo astronauts to the Moon half a century ago - Mather became a bona fide space enthusiast, checking NASA.gov daily, consuming astronaut autobiographies and even 3D-printing flyable model rockets. When the call went out for students to propose a name for NASA's new Mars rover, Mather knew he wanted to contribute.

"This was a chance to help the agency that put humans on the Moon and will soon do it again," said Mather. "This Mars rover will help pave the way for human presence there, and I wanted to try and help in any way I could. Refusal of the challenge was not an option."

Along with forever being associated with the mission, Mather will also receive an invitation to travel with his family to Cape Canaveral Air Force Station in Florida to witness the rover begin its journey when it launches this summer. While Mather has received NASA's grand prize in this competition, NASA also is acknowledging the valuable contributions of the semifinalists whose entries were among the top ones considered.

"They came so far, and their expressive submissions helped make this naming contest the biggest and best in NASA history," said Glaze, who also attended the event Thursday. "So, we decided to send them a little farther - 314 million miles farther. All 155 semifinalists' proposed rover names and essays have been stenciled onto a silicon chip with lines of text smaller than one-thousandth the width of a human hair and will be flown to Mars aboard the rover."

NASA's Perseverance rover is a robotic scientist weighing just under 2,300 pounds (1,043 kilograms). Managed for the agency by JPL, the rover's astrobiology mission includes searching for signs of past microbial life. It also will characterize the planet's climate and geology, and collect samples of Martian rocks and dust for a future Mars Sample Return mission to Earth while paving the way for human exploration of the Red Planet.

"When word went out during the naming event here at JPL, I took a moment to look around the auditorium," said John McNamee, project manager of the Mars 2020 Perseverance rover mission at JPL. "I saw all these dedicated men and women who for years have invested the full measure of their intellect and stamina into the most technologically advanced rover mission in history - and I saw a lot of smiling faces and high-fives. Perseverance? You bet, that is a worthy name that we can be proud of as the first leg of a sample return campaign."

Perseverance currently is undergoing final assembly and checkout at NASA's Kennedy Space Center in Florida. It's targeted to land at Mars' Jezero Crater a little after 3:40 p.m. EST (12:40 p.m. PST) Feb. 18, 2021.

The rover naming contest partnership was part of a Space Act Agreement in educational and public outreach efforts between NASA, Battelle of Columbus, Ohio, and Future Engineers of Burbank, California. Amazon Web Services is an additional prize provider for the Mars 2020 naming contest and will provide Alex and his family a trip to see the launch.

Mars 2020 is part of a larger program that includes missions to the Moon as a way to prepare for human exploration of the Red Planet. Charged with landing the first woman and the next man on the Moon by 2024, NASA will establish a sustained human presence on and around the Moon by 2028 through NASA's Artemis program.

Source: Jet Propulsion Laboratory

****

The nameplate for the Perseverance Mars rover is attached to the spacecraft's robotic arm at NASA's Kennedy Space Center in Florida.
NASA

Friday, February 28, 2020

SpaceX Update: Getting 'Psyched' Up for Another Falcon Heavy Flight!

SpaceX's Falcon Heavy rocket lifts off on its maiden flight from Launch Complex 39A at NASA's Kennedy Space Center in Florida...on February 6, 2018.
SpaceX

NASA Awards Launch Services Contract for the Psyche Mission (Press Release)

NASA has selected SpaceX of Hawthorne, California, to provide launch services for the agency’s Psyche mission. The Psyche mission currently is targeted to launch in July 2022 on a Falcon Heavy rocket from Launch Complex 39A at NASA's Kennedy Space Center in Florida.

The total cost for NASA to launch Psyche and the secondary payloads is approximately $117 million, which includes the launch service and other mission related costs.

The Psyche mission will journey to a unique metal-rich asteroid, also named Psyche, which orbits the Sun between Mars and Jupiter. The asteroid is considered unique, as it appears to largely be made of the exposed nickel-iron core of an early planet – one of the building blocks of our solar system.

Deep within rocky, terrestrial planets, including Earth, scientists infer the presence of metallic cores, but these lie unreachably far below the planet’s rocky mantles and crusts. Because we cannot see or measure Earth’s core directly, the mission to Psyche offers a unique window into the violent history of collisions and accretion that created terrestrial planets.

The launch of Psyche will include two secondary payloads: Escape and Plasma Acceleration and Dynamics Explorers (EscaPADE), which will study the Martian atmosphere, and Janus, which will study binary asteroids.

NASA’s Launch Services Program at Kennedy Space Center in Florida will manage the SpaceX launch service. The mission is led by Arizona State University. NASA’s Jet Propulsion Laboratory is responsible for the mission’s overall management, system engineering, integration, testing and mission operations. Maxar Technologies is providing a high-power solar electric propulsion spacecraft chassis.

Source: NASA.Gov

****

An artist's concept of the Psyche spacecraft orbiting a metallic asteroid named Psyche.
NASA / JPL - Caltech

Thursday, February 27, 2020

The Mission Is Officially Over for the InSight Mars Lander's Two Fellow Passengers in Deep Space...

An animated GIF showing Mars as the Mars Cube One spacecraft known as 'WALL-E' gets closer to the Red Planet on November 25-26, 2018.
NASA / JPL - Caltech

The MarCO Mission Comes to an End (News Release)

The pair of briefcase-sized satellites made history when they sailed past Mars in November 2018.

The first CubeSat mission to fly past Mars has been completed. Contact with the twin Mars Cube One spacecraft - known collectively as MarCO - was lost in early January 2019 as the trajectories of the solar-powered CubeSats carried them farther from the Sun. The team reattempted contacting the briefcase-sized pair this past September, when their orbits brought them closer to the Sun again. On Feb. 2, having been unable to detect any signals from them, the team declared the end of the mission.

The two CubeSats made history, not just for flying past Mars but also for relaying data from NASA's InSight lander. Designs derived from MarCO's radio, attitude control system and antenna will be in CubeSats that NASA will launch to the Moon with Artemis I, part of an effort to send humans back to the Moon in preparation for astronaut missions to Mars.

Data collected by each MarCO CubeSat will be published in the coming year, ensuring that future generations of small-satellite engineers can learn from these important pathfinders.

Source: Jet Propulsion Laboratory

****

An artist's concept of the two MarCO CubeSats, 'WALL-E' and 'EVE,' flying through deep space.
NASA / JPL - Caltech

Friday, February 14, 2020

PLEASE Select the 'Trident' Mission, NASA! Thanks!

An image of Neptune's moon Triton that was taken by NASA's Voyager 2 spacecraft in August of 1989.
NASA / JPL

NASA Selects Four Possible Missions to Study the Secrets of the Solar System (Press Release - February 13)

Two NASA-JPL proposals are among the selections: Trident would explore Neptune's moon Triton, while Veritas aims to map Venus' surface to determine the planet's geologic history.

NASA has selected four Discovery Program investigations to develop concept studies for new missions. Although they're not official missions yet and some ultimately may not be chosen to move forward, the selections focus on compelling targets and science that are not covered by NASA's active missions or recent selections. Final selections will be made next year.

NASA's Discovery Program invites scientists and engineers to assemble a team to design exciting planetary science missions that deepen what we know about the solar system and our place in it. These missions will provide frequent flight opportunities for focused planetary science investigations. The goal of the program is to address pressing questions in planetary science and increase our understanding of our solar system.

"These selected missions have the potential to transform our understanding of some of the solar system's most active and complex worlds," said Thomas Zurbuchen, associate administrator of NASA's Science Mission Directorate. "Exploring any one of these celestial bodies will help unlock the secrets of how it, and others like it, came to be in the cosmos."

Each of the four nine-month studies will receive $3 million to develop and mature concepts and will conclude with a Concept Study Report. After evaluating the concept studies, NASA will continue development of up to two missions towards flight.

The proposals were chosen based on their potential science value and feasibility of development plans following a competitive peer-review process.

The selected proposals are:

TRIDENT

Trident would explore Triton, a unique and highly active icy moon of Neptune, to understand pathways to habitable worlds at tremendous distances from the Sun. NASA's Voyager 2 mission showed that Triton has active resurfacing - generating the second-youngest surface in the solar system - with the potential for erupting plumes and an atmosphere. Coupled with an ionosphere that can create organic snow and the potential for an interior ocean, Triton is an exciting exploration target to understand how habitable worlds may develop in our solar system and others. Using a single flyby, Trident would map Triton, characterize active processes and determine whether the predicted subsurface ocean exists. Louise Prockter of the Lunar and Planetary Institute/Universities Space Research Association in Houston is the principal investigator. NASA's Jet Propulsion Laboratory in Pasadena, California, would provide project management.

VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy)

VERITAS would map Venus' surface to determine the planet's geologic history and understand why Venus developed so differently than the Earth. Orbiting Venus with a synthetic aperture radar, VERITAS charts surface elevations over nearly the entire planet to create three-dimensional reconstructions of topography and confirm whether processes, such as plate tectonics and volcanism, are still active on Venus. VERITAS would also map infrared emissions from the surface to map Venus' geology, which is largely unknown. Suzanne Smrekar of NASA's Jet Propulsion Laboratory in Pasadena, California, is the principal investigator. JPL would provide project management.

DAVINCI+ (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging Plus)

DAVINCI+ would analyze Venus' atmosphere to understand how it formed and evolved and determine whether Venus ever had an ocean. DAVINCI+ plunges through Venus' inhospitable atmosphere to precisely measure its composition down to the surface. The instruments are encapsulated within a purpose-built descent sphere to protect them from the intense environment of Venus. The "+" in DAVINCI+ refers to the imaging component of the mission, which includes cameras on the descent sphere and orbiter designed to map surface rock-type. The last U.S.-led, in-situ mission to Venus was in 1978. The results from DAVINCI+ have the potential to reshape our understanding of terrestrial planet formation in our solar system and beyond. James Garvin of NASA's Goddard Space Flight Center in Greenbelt, Maryland, is the principal investigator. Goddard would provide project management.

Io Volcano Observer (IVO)

IVO would explore Jupiter's moon Io to learn how tidal forces shape planetary bodies. Io is heated by the constant crush of Jupiter's gravity and is the most volcanically active body in the solar system. Little is known about Io's specific characteristics, such as whether a magma ocean exists in its interior. Using close-in flybys, IVO would assess how magma is generated and erupted on Io. The mission's results could revolutionize our understanding of the formation and evolution of rocky, terrestrial bodies, as well as icy ocean worlds in our solar system and extrasolar planets across the universe. Alfred McEwen of the University of Arizona in Tucson is the principal investigator. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, would provide project management.

The concepts were chosen from proposals submitted in 2019 under NASA Announcement of Opportunity (AO) NNH19ZDA010O, Discovery Program. The selected investigations will be managed by the Planetary Missions Program Office at NASA's Marshall Space Flight Center in Huntsville, Alabama, as part of the Discovery Program. The Discovery Program conducts space science investigations in the Planetary Science Division of NASA's Science Mission Directorate, guided by NASA's agency priorities and the Decadal Survey process of the National Academy of Sciences.

Established in 1992, NASA's Discovery Program has supported the development and implementation of over 20 missions and instruments. These selections are part of the ninth Discovery Program competition.

Source: Jet Propulsion Laboratory

Thursday, February 13, 2020

New Horizons Update: New Information Revealed About Kuiper Belt Object 'Arrokoth'...

A high-resolution image of the Kuiper Belt object Arrokoth that was taken by NASA's New Horizons spacecraft from 4,109 miles (6,628 kilometers) away...on January 1, 2019.
NASA / Johns Hopkins Applied Physics Laboratory / Southwest Research Institute, National Optical Astronomy Observatory

New Horizons Team Uncovers a Critical Piece of the Planetary Formation Puzzle (News Release)

Data from NASA’s New Horizons mission are providing new insights into how planets and planetesimals – the building blocks of the planets – were formed.

The New Horizons spacecraft flew past the ancient Kuiper Belt object Arrokoth (2014 MU69) on Jan. 1, 2019, providing humankind’s first close-up look at one of the icy remnants of solar system formation in the vast region beyond the orbit of Neptune. Using detailed data on the object’s shape, geology, color and composition – gathered during a record-setting flyby that occurred more than four billion miles from Earth – researchers have apparently answered a longstanding question about planetesimal origins, and therefore made a major advance in understanding how the planets themselves formed.

The team reports those findings in a set of three papers in the journal Science, and at a media briefing Feb. 13 at the annual American Association for the Advancement of Science meeting in Seattle.

“Arrokoth is the most distant, most primitive and most pristine object ever explored by spacecraft, so we knew it would have a unique story to tell,” said New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute in Boulder, Colorado. “It’s teaching us how planetesimals formed, and we believe the result marks a significant advance in understanding overall planetesimal and planet formation.”

The first post-flyby images transmitted from New Horizons last year showed that Arrokoth had two connected lobes, a smooth surface and a uniform composition, indicating it was likely pristine and would provide decisive information on how bodies like it formed. These first results were published in Science last May.

“This is truly an exciting find for what is already a very successful and history-making mission” said Lori Glaze, director of NASA's Planetary Science Division. “The continued discoveries of NASA’s New Horizons spacecraft astound as it reshapes our knowledge and understanding of how planetary bodies form in solar systems across the universe.”

Over the following months, working with more and higher-resolution data as well as sophisticated computer simulations, the mission team assembled a picture of how Arrokoth must have formed. Their analysis indicates that the lobes of this “contact binary” object were once separate bodies that formed close together and at low velocity, orbited each other, and then gently merged to create the 22-mile long object New Horizons observed.

This indicates Arrokoth formed during the gravity-driven collapse of a cloud of solid particles in the primordial solar nebula, rather than by the competing theory of planetesimal formation called hierarchical accretion. Unlike the high-speed collisions between planetesimals in hierarchical accretion, in particle-cloud collapse, particles merge gently, slowly growing larger.

“Just as fossils tell us how species evolved on Earth, planetesimals tell us how planets formed in space,” said William McKinnon, a New Horizons co-investigator from Washington University in St. Louis, and lead author of an Arrokoth formation paper in Science this week. “Arrokoth looks the way it does not because it formed through violent collisions, but in more of an intricate dance, in which its component objects slowly orbited each other before coming together.”

Two other important pieces of evidence support this conclusion. The uniform color and composition of Arrokoth’s surface shows the KBO formed from nearby material, as local cloud collapse models predict, rather than a mishmash of matter from more separated parts of the nebula, as hierarchical models might predict.

The flattened shapes of each of Arrokoth’s lobes, as well as the remarkably close alignment of their poles and equators, also point to a more orderly merger from a collapse cloud. Further still, Arrokoth’s smooth, lightly cratered surface indicates its face has remained well preserved since the end of the planet formation era.

“Arrokoth has the physical features of a body that came together slowly, with ‘local’ materials in the solar nebula,” said Will Grundy, New Horizons composition theme team lead from Lowell Observatory in Flagstaff, Arizona, and the lead author of a second Science paper. “An object like Arrokoth wouldn’t have formed, or look the way it does, in a more chaotic accretion environment.”

The latest Arrokoth reports significantly expand on the May 2019 Science paper, led by Stern. The three new papers are based on 10 times as much data as the first report, and together provide a far more complete picture of Arrokoth’s origin.

“All of the evidence we’ve found points to particle-cloud collapse models, and all but rule out hierarchical accretion for the formation mode of Arrokoth, and by inference, other planetesimals,” Stern said.

New Horizons continues to carry out new observations of additional Kuiper Belt objects it passes in the distance. New Horizons also continues to map the charged-particle radiation and dust environment in the Kuiper Belt. The new KBOs being observed now are too far away to reveal discoveries like those on Arrokoth, but the team can measure aspects such as each object's surface properties and shape. This summer the mission team will begin using large groundbased telescopes to search for new KBOs to study in this way, and even for another flyby target if fuel allows.

The New Horizons spacecraft is now 4.4 billion miles (7.1 billion kilometers) from Earth, operating normally and speeding deeper into the Kuiper Belt at nearly 31,300 miles (50,400 kilometers) per hour.

The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, designed, built and operates the New Horizons spacecraft, and manages the mission for NASA's Science Mission Directorate. The Marshall Space Flight Center Planetary Management Office provides the NASA oversight for the New Horizons. Southwest Research Institute, based in San Antonio, directs the mission via Principal Investigator Stern, and leads the science team, payload operations and encounter science planning. New Horizons is part of the New Frontiers Program managed by NASA's Marshall Space Flight Center in Huntsville, Alabama.

Source: NASA.Gov

****

Wednesday, February 12, 2020

America's Next Red Planet Rover Has Arrived at Cape Canaveral in Florida!

A cargo container carrying NASA's Mars 2020 rover is loaded onto a C-17 aircraft at March Air Reserve Base in Riverside, California for the flight to Cape Canaveral, Florida...on February 11, 2020.
NASA / JPL - Caltech

NASA's Mars 2020 Rover Goes Coast-to-Coast to Prep for Launch (News Release)

The agency's first step in returning rocks from Mars just arrived at Kennedy Space Center. The Mars 2020 team now begins readying for a launch to the Red Planet this July.

NASA's next Mars rover has arrived in Florida to begin final preparations for its launch to the Red Planet this July. An Air Force C-17 Globemaster cargo plane carrying the Mars 2020 rover and descent stage touched down at NASA's Kennedy Space Center at about 3 p.m. EST (12 p.m. PST) today, completing a 2,300-mile (3,700-kilometer) trip that began yesterday at NASA's Jet Propulsion Laboratory near Pasadena, California. The mission's cruise stage and Mars Helicopter will make the trip to Kennedy later this week.

"Our rover has left the only home it has ever known," said John McNamee, Mars 2020 project manager. "The 2020 family here at JPL is a little sad to see it go, but we're even more proud knowing that the next time our rover takes to the skies, it will be headed to Mars."

Assembly, test and launch operations for Mars 2020 began in January 2018. The first piece of hardware that would become part of the rover arrived on the clean room floor of JPL's Spacecraft Assembly Facility's High Bay 1 a few months later.

The rover's aeroshell - its protective covering for the trip to the Red Planet - arrived at Kennedy this past December. Early on Feb. 11, the rover, cruise stage, descent stage and mission support equipment headed in four police-escorted trucks to the U.S. Air Force's March Air Reserve Base, where they were loaded aboard the two waiting C-17s.

Within hours of arriving at the Kennedy Space Center's Launch and Landing Facility, the Mars 2020 spacecraft components will be transported to the same spacecraft processing facility that in 2011 handled NASA's Curiosity rover, which is currently exploring Mars' Gale Crater. In the coming days, the Mars 2020 assembly, test and launch operations team will begin testing the components to assess their health following the cross-country flight.

After months of final assembly and additional testing, Mars 2020 should be enclosed in its aeroshell for the final time in late June. It will be delivered to Cape Canaveral Air Force Station's Launch Complex 41 to be integrated with the United Launch Alliance Atlas V rocket that will hurl it toward Jezero Crater in early July.

Mars 2020 will collect and store rock and soil samples in sealed tubes and will search for signs of past microbial life, characterize the planet's climate and geology, and pave the way for human exploration. Subsequent missions, currently in the planning stages, will return to Jezero Crater, gather the samples collected by Mars 2020 and return them to Earth for the sort of in-depth study that only a full-size lab can provide.

JPL is building and will manage operations of the Mars 2020 rover for NASA. NASA's Launch Services Program, based at the agency's Kennedy Space Center in Florida, is responsible for launch management.

Source: Jet Propulsion Laboratory

Tuesday, February 11, 2020

Our Communications Network for Interplanetary Spacecraft Is About to Get a New Addition in Southern California...

An artist's concept of the Deep Space Network's newest radio antenna: DSS-23...which has begun construction in California's Mojave Desert and will be completed in about 2.5 years.
NASA / JPL - Caltech

NASA Prepares for Moon and Mars With New Addition to Its Deep Space Network (News Release)

Robotic spacecraft will be able to communicate with the dish using radio waves and lasers.

Surrounded by California desert, NASA officials broke ground Tuesday, Feb. 11, on a new antenna for communicating with the agency's farthest-flung robotic spacecraft. Part of the Deep Space Network (DSN), the 112-foot-wide (34-meter-wide) antenna dish being built represents a future in which more missions will require advanced technology, such as lasers capable of transmitting vast amounts of data from astronauts on the Martian surface. As part of its Artemis program NASA will send the first woman and next man to the Moon by 2024, applying lessons learned there to send astronauts to Mars.

Using massive antenna dishes, the agency talks to more than 30 deep space missions on any given day, including many international missions. As more missions have launched and with more in the works, NASA is looking to strengthen the network. When completed in 2½ years, the new dish will be christened Deep Space Station-23 (DSS-23), bringing the DSN's number of operational antennas to 13.

"Since the 1960s, when the world first watched live pictures of humans in space and on the Moon, to revealing imagery and scientific data from the surface of Mars and vast, distant galaxies, the Deep Space Network has connected humankind with our solar system and beyond," said Badri Younes, NASA's deputy associate administrator for Space Communications and Navigation, or SCaN, which oversees NASA's networks. "This new antenna, the fifth of six currently planned, is another example of NASA's determination to enable science and space exploration through the use of the latest technology."

Managed by NASA's Jet Propulsion Laboratory in Pasadena, California, the world's largest and busiest deep space network is clustered in three locations - Goldstone, California; Madrid, Spain; and Canberra, Australia - that are positioned approximately 120 degrees apart around the globe to enable continual contact with spacecraft as the Earth rotates. (This live tool lets viewers see which DSN dishes are sending up commands or receiving data at any given time.)

The first addition to Goldstone since 2003, the new dish is being built at the complex's Apollo site, so named because its DSS-16 antenna supported NASA's human missions to the Moon. Similar antennas have been built in recent years in Canberra, while two are under construction in Madrid.

"The DSN is Earth's one phone line to our two Voyager spacecraft - both in interstellar space - all our Mars missions and the New Horizons spacecraft that is now far past Pluto," said JPL Deputy Director Larry James. "The more we explore, the more antennas we need to talk to all our missions."

While DSS-23 will function as a radio antenna, it will also be equipped with mirrors and a special receiver for lasers beamed from distant spacecraft. This technology is critical for sending astronauts to places like Mars. Humans there will need to communicate with Earth more than NASA's robotic explorers do, and a Mars base, with its life support systems and equipment, would buzz with data that needs to be monitored.

"Lasers can increase your data rate from Mars by about 10 times what you get from radio," said Suzanne Dodd, director of the Interplanetary Network, the organization that manages the DSN. "Our hope is that providing a platform for optical communications will encourage other space explorers to experiment with lasers on future missions."

While clouds can disrupt lasers, Goldstone's clear desert skies make it an ideal location to serve as a laser receiver about 60% of the time. A demonstration of DSS-23's capabilities is around the corner: When NASA launches an orbiter called Psyche to a metallic asteroid in a few years, it will carry an experimental laser communications terminal developed by JPL. Called the Deep Space Optical Communications project, this equipment will send data and images to an observatory at Southern California's Palomar Mountain. But Psyche will also be able to communicate with the new Goldstone antenna, paving the way for higher data rates in deep space.

Source: Jet Propulsion Laboratory

Thursday, January 30, 2020

NASA Makes Way for the James Webb Space Telescope as a 'Great Observatory' Goes Silent...

An artist's concept of NASA's Spitzer Space Telescope gazing at the heavens while floating through deep space.
NASA / JPL - Caltech

NASA’s Spitzer Space Telescope Ends Mission of Astronomical Discovery (Press Release)

After more than 16 years studying the universe in infrared light, revealing new wonders in our solar system, our galaxy, and beyond, NASA's Spitzer Space Telescope's mission has come to an end.

Mission engineers confirmed at 2:30 p.m. PST (5:30 p.m. EST) Thursday the spacecraft was placed in safe mode, ceasing all science operations. After the decommissioning was confirmed, Spitzer Project Manager Joseph Hunt declared the mission had officially ended.

Launched in 2003, Spitzer was one of NASA's four Great Observatories, along with the Hubble Space Telescope, the Chandra X-ray Observatory and the Compton Gamma Ray Observatory. The Great Observatories program demonstrated the power of using different wavelengths of light to create a fuller picture of the universe.

"Spitzer has taught us about entirely new aspects of the cosmos and taken us many steps further in understanding how the universe works, addressing questions about our origins, and whether or not are we alone," said Thomas Zurbuchen, associate administrator of NASA's Science Mission Directorate in Washington. "This Great Observatory has also identified some important and new questions and tantalizing objects for further study, mapping a path for future investigations to follow. Its immense impact on science certainly will last well beyond the end of its mission."

Among its many scientific contributions, Spitzer studied comets and asteroids in our own solar system and found a previously unidentified ring around Saturn. It studied star and planet formation, the evolution of galaxies from the ancient universe to today, and the composition of interstellar dust. It also proved to be a powerful tool for detecting exoplanets and characterizing their atmospheres. Spitzer's best-known work may be detecting the seven Earth-size planets in the TRAPPIST-1 system – the largest number of terrestrial planets ever found orbiting a single star – and determining their masses and densities.

In 2016, following a review of operating astrophysics missions, NASA made a decision to close out the Spitzer mission in 2018 in anticipation of the launch of the James Webb Space Telescope, which also will observe the universe in infrared light. When Webb's launch was postponed, Spitzer was granted an extension to continue operations until this year. This gave Spitzer additional time to continue producing transformative science, including insights that will pave the way for Webb, which is scheduled to launch in 2021.

"Everyone who has worked on this mission should be extremely proud today," Hunt said. "There are literally hundreds of people who contributed directly to Spitzer's success, and thousands who used its scientific capabilities to explore the universe. We leave behind a powerful scientific and technological legacy."

Keeping Cool

Though it was not NASA's first space-based infrared telescope, Spitzer was the most sensitive infrared telescope in history when it launched, and it delivered a deeper and more far-reaching view of the infrared cosmos than its predecessors. Above Earth's atmosphere, Spitzer could detect some wavelengths that cannot be observed from the ground. The spacecraft's Earth-trailing orbit placed it far away from our planet's infrared emissions, which also gave Spitzer better sensitivity than was possible for larger telescopes on Earth.

Spitzer's prime mission came to an end in 2009, when the telescope exhausted its supply of the liquid helium coolant necessary for operating two of its three instruments – the Infrared Spectrograph (IRS) and Multiband Imaging Photometer for Spitzer (MIPS). The mission was deemed a success, having achieved all of its primary science objectives and more. But Spitzer's story wasn't over. Engineers and scientists were able to keep the mission going using only two out of four wavelength channels on the third instrument, the Infrared Array Camera (IRAC). Despite increasing engineering and operations challenges, Spitzer continued to produce transformational science for another 10 1/2 years – far longer than mission planners anticipated.

During its extended mission, Spitzer continued to make significant scientific discoveries. In 2014, it detected evidence of asteroid collisions in a newly formed planetary system, providing evidence that such smash-ups might be common in early solar systems and crucial to the formation of some planets. In 2016, Spitzer worked with Hubble to image the most distant galaxy ever detected. From 2016 onward, Spitzer studied the TRAPPIST-1 system for more than 1,000 hours. All of Spitzer's data are free and available to the public in the Spitzer data archive. Mission scientists say they expect researchers to continue making discoveries with Spitzer long after the spacecraft’s decommissioning.

"I think that Spitzer is an example of the very best that people can achieve," said Spitzer Project Scientist Michael Werner. "I feel very fortunate to have worked on this mission, and to have seen the ingenuity, doggedness and brilliance that people on the team showed. When you tap into those things and empower people to use them, then truly incredible things will happen."

NASA's Jet Propulsion Laboratory (JPL) near Pasadena, California, conducts mission operations and manages the Spitzer Space Telescope mission for the agency's Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Spacecraft operations are based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA.

Lockheed Martin in Sunnyvale, California, built the Spitzer spacecraft, and during development served as lead for systems and engineering, and integration and testing. Ball Aerospace and Technologies Corporation in Boulder, Colorado provided the optics, cryogenics and thermal shells and shields for Spitzer.

Ball developed the IRS instrument, with science leadership based at Cornell University, and the MIPS instrument, with science leadership based at the University of Arizona in Tucson. NASA's Goddard Space Flight Center in Greenbelt, Maryland, developed the IRAC instrument, with science leadership based at the Harvard Smithsonian Astrophysics Observatory in Cambridge, Massachusetts.​

****

Inside the Space Flight Operations Facility at NASA's Jet Propulsion Laboratory near Pasadena, California, project members applaud after the mission came to an end on January 30, 2020.
NASA / JPL - Caltech

Sunday, January 26, 2020

ABSOLUTELY DEVASTATED.

As his wife and two daughters stand nearby, Kobe Bryant hoists up the NBA championship trophy after he leads the Los Angeles Lakers to its 15th title, on June 14, 2009.
Getty Images

Rest In Peace, Kobe. It was an honor meeting you at The Grove in Los Angeles back on October 23, 2018. It is totally surreal and heartbreaking that you are no longer with us. May you, your beautiful daughter Gianna, and the seven other wonderful people you were with when today's unthinkable tragedy took place now look down upon us from Heaven. We will surely continue to look up to you as a legend whose legacy will forever transcend the sport of basketball. Mamba out.

Posing with Kobe Bryant during a photo op inside Barnes & Noble bookstore at The Grove in Los Angeles...on October 23, 2018.

Monday, January 13, 2020

Photo of the Day: VIPER's Engineering Model Goes Through the Motions...

Two technicians look on as an engineering model of NASA's VIPER lunar rover is tested at NASA's Glenn Research Center in Cleveland, Ohio.
NASA / Bridget Caswell, Alcyon Technical Services

NASA’s New Moon Rover Tested in Lunar Operations Lab (News Release)

An engineering model of the Volatiles Investigating Polar Exploration Rover, or VIPER, is tested in the Simulated Lunar Operations Laboratory at NASA’s Glenn Research Center in Cleveland, Ohio. About the size of a golf cart, VIPER is a mobile robot that will roam around the Moon’s South Pole looking for water ice in the region and for the first time ever, actually sample the water ice at the same pole where the first woman and next man will land in 2024 under the Artemis program.

The large, adjustable soil bin contains lunar simulant and allows engineers to mimic the Moon’s terrain. Engineers from NASA’s Johnson Space Center in Houston, where the rover was designed and built, joined the Glenn team to complete the tests. Test data will be used to evaluate the traction of the vehicle and wheels, determine the power requirements for a variety of maneuvers and compare methods of traversing steep slopes. Respirators are worn by researchers to protect against the airborne silica that is present during testing.

VIPER is a collaboration within and beyond the agency. NASA's Ames Research Center in Silicon Valley is managing the project, leading the mission’s science, systems engineering, real-time rover surface operations and software. The rover’s instruments are provided by Ames, NASA’s Kennedy Space Center in Florida and commercial partner, Honeybee Robotics in California. The spacecraft, lander and launch vehicle that will deliver VIPER to the surface of the Moon will be provided through NASA’s Commercial Lunar Payload Services program, delivering science and technology payloads to and near the Moon.  

Source: NASA.Gov