Friday, October 25, 2019

NASA to Launch a Rover That Will Explore the South Pole of the Moon in 2022...

An artist's concept of NASA's VIPER rover on the surface of the Moon.
NASA Ames / Daniel Rutter

New VIPER Lunar Rover to Map Water Ice on the Moon (News Release)

NASA is sending a mobile robot to the South Pole of the Moon to get a close-up view of the location and concentration of water ice in the region and for the first time ever, actually sample the water ice at the same pole where the first woman and next man will land in 2024 under the Artemis program.

About the size of a golf cart, the Volatiles Investigating Polar Exploration Rover, or VIPER, will roam several miles, using its four science instruments — including a 1-meter drill — to sample various soil environments. Planned for delivery to the lunar surface in December 2022, VIPER will collect about 100 days of data that will be used to inform the first global water resource maps of the Moon.

“The key to living on the Moon is water – the same as here on Earth,” said Daniel Andrews, the project manager of the VIPER mission and director of engineering at NASA’s Ames Research Center in Silicon Valley. “Since the confirmation of lunar water-ice ten years ago, the question now is if the Moon could really contain the amount of resources we need to live off-world. This rover will help us answer the many questions we have about where the water is, and how much there is for us to use.”

NASA's Artemis program begins a new era where robots and humans working together will push the boundaries of what’s possible in space exploration. In collaboration with commercial and international partners, NASA’s ambition is to achieve a long-term sustainable presence on the Moon – enabling humans to go on to Mars and beyond.

Scientists had long considered the lunar poles as promising spots to find water ice – a resource of direct value for humans that could provide oxygen to breathe and hydrogen and oxygen to fuel future landers and rockets. The Moon’s tilt creates permanently shadowed regions where water ice from comet and meteor impacts, as well as the Sun’s interaction with the lunar soil, can collect without being melted by sunlight. In 2009, NASA crashed a rocket (as part of the ongoing Lunar Reconnaissance Orbiter mission) into a large crater near the South Pole and directly detected the presence of water ice. Data from this mission and other orbiters have confirmed that the Moon has reservoirs of water ice, potentially amounting to millions of tons. Now, we need to understand the location and nature of the water and other potentially accessible resources to aid in planning how to extract and collect it.

“It’s incredibly exciting to have a rover going to the new and unique environment of the South Pole to discover where exactly we can harvest that water,” said Anthony Colaprete, VIPER’s project scientist. “VIPER will tell us which locations have the highest concentrations and how deep below the surface to go to get access to water.”

To unravel the mysteries of the Moon’s South Pole, the rover will collect data on different kinds of soil environments affected by light and temperature – those in complete darkness, occasional light and in direct sunlight. By collecting data on the amount of water and other materials in each, NASA can map out where else water likely lies across the Moon.

As the rover drives across the surface, it will use the Neutron Spectrometer System, known as NSS, to detect “wet” areas below the surface for further investigation. VIPER will then stop and deploy a drill, The Regolith and Ice Drill for Exploring New Terrain, or TRIDENT, developed with Honeybee Robotics, to dig up soil cuttings from up to a meter beneath the surface. These drill samples will then be analyzed by two instruments: the Mass Spectrometer Observing Lunar Operations, or MSolo, developed out of NASA’s Kennedy Space Center; and the Near InfraRed Volatiles Spectrometer System, known as NIRVSS, developed by Ames. MSolo and NIRVSS will determine the composition and concentration of potentially accessible resources, including water, that were brought up by TRIDENT.

VIPER is a collaboration within and beyond the agency. VIPER is part of the Lunar Discovery and Exploration Program managed by the Science Mission Directorate at NASA Headquarters. Ames is managing the rover project, leading the mission’s science, systems engineering, real-time rover surface operations and software development. The hardware for the rover is being designed by the Johnson Space Center, while the instruments are provided by Ames, Kennedy, and commercial partner, Honeybee Robotics. The spacecraft lander and launch vehicle that will deliver VIPER to the surface of the Moon, will be provided through NASA’s Commercial Lunar Payload Services (CLPS) contract, delivering science and technology payloads to and near the Moon.

Source: NASA.Gov

****

An engineering model of the VIPER lunar rover rolls along a testbed at NASA's Johnson Space Center in Houston, Texas.
NASA / Johnson Space Center

Monday, October 21, 2019

Hubble's Successor Finally Looks Like Its True Self...

The James Webb Space Telescope's sunshield is deployed during a test inside a Northrop Grumman facility at Redondo Beach, California.
NASA / Chris Gunn

NASA’s James Webb Space Telescope Clears Critical Sunshield Deployment Testing (News Release)

The sunshield for NASA’s James Webb Space Telescope has passed a test critical to preparing the observatory for its 2021 launch. Technicians and engineers fully deployed and tensioned each of the sunshield's five layers, successfully putting the sunshield into the same position it will be in a million miles from Earth.

“This was the first time that the sunshield has been deployed and tensioned by the spacecraft electronics and with the telescope present above it. The deployment is visually stunning as a result, and it was challenging to accomplish," said James Cooper, NASA’s Webb Telescope Sunshield Manager at NASA’s Goddard Space Flight Center, Greenbelt, Maryland.

To observe distant parts of the universe humans have never seen before, the Webb observatory is equipped with an arsenal of revolutionary technologies, making it the most sophisticated and complex space science telescope ever created. Among the most challenging of these technologies is the five-layer sunshield, designed to protect the observatory's mirrors and scientific instruments from light and heat, primarily from the Sun.

As a telescope optimized for infrared light, it is imperative that Webb’s optics and sensors remain extremely cold, and its sunshield is key for regulating temperature. Webb requires a successful sunshield deployment on orbit to meet its science goals.

The sunshield separates the observatory into a warm side that always faces the Sun (thermal models show the maximum temperature of the outermost layer is 383 Kelvin or approximately 230 degrees Fahrenheit), and a cold side that always faces deep space (with the coldest layer having a modeled minimum temp of 36 Kelvin, or around minus 394 degrees Fahrenheit). The oxygen present in Earth’s atmosphere would freeze solid at the temperatures experienced on the cold side of the sunshield, and an egg could easily be boiled with the heat encountered on the warm end.

Webb has passed other deployment tests during its development. Equally as important were the successful disposition of issues uncovered by those earlier deployments and the spacecraft element environmental testing. As before, technicians used gravity-offsetting pulleys and weights to simulate the zero-g environment it will experience in space. By carefully monitoring the deployment and tensioning of each individual layer, Webb technicians ensure that once on orbit, they will function flawlessly.

"This test showed that the sunshield system survived spacecraft element environmental testing, and taught us about the interfaces and interactions between the telescope and sunshield parts of the observatory," Cooper added. "Many thanks to all the engineers and technicians for their perseverance, focus and countless hours of effort to achieve this milestone.”

The sunshield consists of five layers of a polymer material called Kapton. Each layer is coated with vapor-deposited aluminum, to reflect the Sun’s heat into space. The two hottest sun-facing layers also have a "doped-silicon" (or treated silicon) coating to protect them from the Sun’s intense ultraviolet radiation.

To collect light from some of the first stars and galaxies to have formed after the Big Bang, the telescope needed both the largest mirror ever to be launched into space, and the sunshield that has the wingspan of an entire tennis court. Because of the telescope’s size, shape and thermal performance requirements, the sunshield must be both big and complex. But it also has to fit inside a standard 16-foot-(5-meter)-diameter rocket payload fairing, and also reliably deploy into a specific shape, while experiencing the absence of gravity, without error.

Following Webb’s successful sunshield test, team members will begin the long process of perfectly folding the sunshield back into its stowed position for flight, which occupies a much smaller space than when it is fully deployed. Then, the observatory will be subjected to comprehensive electrical tests and one more set of mechanical tests that emulate the launch vibration environment, followed by one final deployment and stowing cycle on the ground, before its flight into space.

Webb will be the world's premier space science observatory. It will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Source: NASA.Gov

****

The James Webb Space Telescope's sunshield is deployed during a test inside a Northrop Grumman facility at Redondo Beach, California.
NASA / Chris Gunn

Thursday, September 26, 2019

Remembering a Fellow Lancer...

Rest In Peace, Mariana. Earlier today, I found out on Facebook that Mariana Baserga—my former classmate from Bishop Amat Memorial High School—passed away after fighting a brave battle with cancer. I was absolutely devastated to hear this. Even though I wasn't a close friend of Mariana when we were in high school from 1994 to '98, I chatted with her during our 20-year high school reunion that took place in Newport Beach, CA almost a year ago.. It was a memorable time...and it's gonna be heartbreaking not to see Mariana around when my fellow Lancers (that's the name of our high school mascot) convene for our 30-year reunion in 2028. My condolences to Mariana's family.

Rob, Mariana, Alfred and I take a group photo during our 20-year high school reunion in Newport Beach, California...on October 6, 2018.

Thursday, August 29, 2019

The First Interplanetary Aircraft Has Been Attached to America's Next Red Planet Rover...

Inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory near Pasadena, CA, an engineer works on attaching the Mars Helicopter to the belly of the Mars 2020 rover...on August 28, 2019.
NASA / JPL - Caltech

NASA's Mars Helicopter Attached to Mars 2020 Rover (News Release - August 28)

Engineers attached NASA's Mars Helicopter, which will be the first aircraft to fly on another planet, to the belly of the Mars 2020 rover today in the High Bay 1 clean room at the Jet Propulsion Laboratory near Pasadena, California.

The twin-rotor, solar-powered helicopter was connected, along with the Mars Helicopter Delivery System, to a plate on the rover's belly that includes a cover to shield the helicopter from debris during entry, descent and landing. The helicopter will remain encapsulated after landing, deploying to the surface once a suitable area to conduct test flights is found at Jezero Crater, the rover's destination.

The Mars Helicopter is considered a high-risk, high-reward technology demonstration. If the small craft encounters difficulties, the science-gathering of the Mars 2020 mission won't be impacted. If the helicopter does take flight as designed, future Mars missions could enlist second-generation helicopters to add an aerial dimension to their explorations.

"Our job is to prove that autonomous, controlled flight can be executed in the extremely thin Martian atmosphere," said JPL's MiMi Aung, the Mars Helicopter project manager. "Since our helicopter is designed as a flight test of experimental technology, it carries no science instruments. But if we prove powered flight on Mars can work, we look forward to the day when Mars helicopters can play an important role in future explorations of the Red Planet."

Along with investigating difficult-to-reach destinations such as cliffs, caves and deep craters, they could carry small science instruments or act as scouts for human and robotic explorers. The agency intends to establish a sustained human presence on and around the Moon through NASA's Artemis lunar exploration plans, using the Moon as a stepping stone to putting humans on Mars.

"The Wright Brothers flew the first airplane at Kitty Hawk, North Carolina, but they built it in Dayton," said NASA Administrator Jim Bridenstine. "The Mars Helicopter, destined to be the first aircraft to fly on another world, was built in Pasadena, California. Joined now to the 2020 rover, it is yet another example of how NASA's Artemis generation is expanding humanity's reach in our solar system."

"With this joining of two great spacecraft, I can say definitively that all the pieces are in place for a historic mission of exploration," said Thomas Zurbuchen, associate administrator of the Science Mission Directorate at NASA's headquarters in Washington. "Together, Mars 2020 and the Mars Helicopter will help define the future of science and exploration of the Red Planet for decades to come."

The Mars 2020 rover, with the Mars Helicopter aboard, will launch on a United Launch Alliance Atlas V rocket in July 2020 from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. When it lands at Jezero Crater on Feb. 18, 2021, the rover will be the first spacecraft in the history of planetary exploration with the ability to accurately retarget its point of touchdown during the landing sequence.

JPL is building and will manage operations of the Mars 2020 rover and the Mars Helicopter for NASA. NASA's Launch Services Program, based at the agency's Kennedy Space Center in Florida, is responsible for launch management. Lockheed Martin Space provided the Mars Helicopter Delivery System.

To submit your name to travel to Mars with NASA's 2020 mission and obtain a souvenir boarding pass to the Red Planet, go here by Sept. 30, 2019:

https://go.nasa.gov/Mars2020Pass

Source: Jet Propulsion Laboratory

****

An animated GIF showing the Mars Helicopter fly away from the Mars 2020 rover on the surface of the Red Planet.
NASA / JPL - CalTech

Wednesday, August 28, 2019

Hubble's Successor Has Finally Gained Its True Form...

At a Northrop Grumman facility in Redondo Beach, California, the James Webb Space Telescope is fully assembled after the telescope is attached to its sunshield and the rest of the spacecraft.
NASA / Chris Gunn

Connecting the Webb (News Release)

Reaching a major milestone, engineers have successfully connected the two halves of the NASA/ESA/CSA James Webb Space Telescope for the first time at Northrop Grumman’s facilities in Redondo Beach, California. Once it reaches space, Webb will explore the cosmos using infrared light, from planets and moons within our solar system to the most ancient and distant galaxies.

To combine both halves of Webb, engineers carefully lifted the telescope (which includes the mirrors and science instruments) above the already-combined sunshield and spacecraft using a crane. Team members slowly guided the telescope into place, ensuring that all primary points of contact were perfectly aligned and seated properly. The observatory has been mechanically connected; next steps will be to electrically connect the halves, and then test the electrical connections.

Later, engineers will fully deploy the intricate five-layer sunshield, which is designed to keep Webb's mirrors and scientific instruments cold by blocking infrared light from Earth, the Moon and Sun. The ability of the sunshield to deploy to its correct shape is critical to mission success.

Webb is scheduled for launch on a European Ariane 5 rocket from French Guiana in March 2021.

The James Webb Space Telescope is an international project led by NASA with its partners, ESA and the Canadian Space Agency. As part of its contribution to the project, ESA provides the NIRSpec instrument, the Optical Bench Assembly of the MIRI instrument, the Ariane 5 launcher, and staff to support mission operations at the Space Telescope Science Institute (STScI) in Baltimore, USA.

Source: European Space Agency

****

At a Northrop Grumman facility in Redondo Beach, California, the James Webb Space Telescope is fully assembled after the telescope is attached to its sunshield and the rest of the spacecraft.
NASA / Chris Gunn

Tuesday, August 27, 2019

Flying at the Speed of Light for a Decade...

An artist's concept of the Gliese 581 star system.

Ten Light-Years... That’s how far the Hello From Earth message has traveled since being transmitted from a giant NASA antenna in Australia to the exoplanet Gliese 581d in the summer of 2009. As of 7 PM California time tonight (12 PM Sydney time on Wednesday, August 28), the radio signal containing 25,878 goodwill text messages—including one by me—will have ventured across approximately 59 trillion miles (95 trillion kilometers) of deep space...which, as stated at the very start of this Blog entry, equals a distance of ten light-years. The signal, despite traveling 186,000 miles per second (or 671 million miles per hour, or um, 1 billion kilometers per hour), will still take about 10 years to reach the Gliese 581 star system. Happy Tuesday!


"My name is Richard Par, and HELLO from planet Earth!!! I hope all is well in your civilization...and I hope you are a much more peaceful species than we are..."
Richard Par

August 17, 2009

Monday, August 19, 2019

The Europa Clipper Moves One Step Closer to Construction...

An artist's concept of NASA's Europa Clipper spacecraft flying above Jupiter's icy moon Europa.
NASA / JPL - Caltech

Europa Clipper's Mission to Jupiter’s Icy Moon Confirmed (News Release)

An icy ocean world in our solar system that could tell us more about the potential for life on other worlds is coming into focus with confirmation of the Europa Clipper mission’s next phase. The decision allows the mission to progress to completion of final design, followed by the construction and testing of the entire spacecraft and science payload.

“We are all excited about the decision that moves the Europa Clipper mission one key step closer to unlocking the mysteries of this ocean world,” said Thomas Zurbuchen, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “We are building upon the scientific insights received from the flagship Galileo and Cassini spacecraft and working to advance our understanding of our cosmic origin, and even life elsewhere.”

The mission will conduct an in-depth exploration of Jupiter's moon, Europa, and investigate whether the icy moon could harbor conditions suitable for life, honing our insights into astrobiology. To develop this mission in the most cost-effective fashion, NASA is targeting to have the Europa Clipper spacecraft complete and ready for launch as early as 2023. The agency baseline commitment, however, supports a launch readiness date by 2025.

NASA's Jet Propulsion Laboratory in Pasadena, California leads the development of the Europa Clipper mission in partnership with the Johns Hopkins University Applied Physics Laboratory for the Science Mission Directorate. Europa Clipper is managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

Source: NASA.Gov

Thursday, August 15, 2019

Support My Film THE BROKEN TABLE on Kickstarter!


ABOVE: A concept trailer for The Broken Table.

Two days ago, I launched a crowdfunding campaign for my short film The Broken Table...which is a psychological thriller about a man whose mundane act of fixing a damaged piece of furniture at home isn’t what it seems. This film has a crazy twist at the end...which I obviously won't reveal, except to say that my friends who read the script asked me, "What comes next?" For those of you reading this Blog entry, click on the link below and make a generous contribution to this project and find out! You can donate as little as $1, $5, $15 or $25—or as high as $1,000 if you wanna be credited as an Executive Producer plus get other perks! Guess with pledge level I actually want you to choose, heheh. (HINT: I don't mind putting another Producer credit at the end of the film!) Anyways, click on this link:

https://kickstarter.com/projects/parman/the-broken-table-a-short-film

The Kickstarter campaign will go from August 13 to September 13, and end at 9 AM, PDT that Friday. Even though there are still 28 days left, donate now! My crew and I are planning to shoot The Broken Table less than two months later...on November 2 and 3. So donate now!

PS: My awesome pitch video (with its random Family Guy-ish cut scenes) on the Kickstarter page won't reflect the awesomely sinister nature of the actual film! Carry on.

ABOVE: An animated promo for The Broken Table...featuring a snippet of music that will be used in the actual film.

Monday, August 12, 2019

OSIRIS-REx Update: The Search for a Good Site to Collect Samples From the Surface of Asteroid Bennu Continues...

Images taken by OSIRIS-REx showing four site candidates in which one will be where the NASA spacecraft extracts samples from asteroid Bennu's surface late next year.
NASA / University of Arizona

NASA Mission Selects Final Four Site Candidates for Asteroid Sample Return (Press Release)

After months grappling with the rugged reality of asteroid Bennu’s surface, the team leading NASA’s first asteroid sample return mission has selected four potential sites for the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft to “tag” its cosmic dance partner.

Since its arrival in December 2018, the OSIRIS-REx spacecraft has mapped the entire asteroid in order to identify the safest and most accessible spots for the spacecraft to collect a sample. These four sites now will be studied in further detail in order to select the final two sites – a primary and backup – in December.

The team originally had planned to choose the final two sites by this point in the mission. Initial analysis of Earth-based observations suggested the asteroid’s surface likely contains large “ponds” of fine-grain material. The spacecraft’s earliest images, however, revealed Bennu has an especially rocky terrain. Since then, the asteroid’s boulder-filled topography has created a challenge for the team to identify safe areas containing sampleable material, which must be fine enough – less than 1 inch (2.5 cm) diameter – for the spacecraft’s sampling mechanism to ingest it.

“We knew that Bennu would surprise us, so we came prepared for whatever we might find,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. “As with any mission of exploration, dealing with the unknown requires flexibility, resources and ingenuity. The OSIRIS-REx team has demonstrated these essential traits for overcoming the unexpected throughout the Bennu encounter.”

The original mission schedule intentionally included more than 300 days of extra time during asteroid operations to address such unexpected challenges. In a demonstration of its flexibility and ingenuity in response to Bennu’s surprises, the mission team is adapting its site selection process. Instead of down-selecting to the final two sites this summer, the mission will spend an additional four months studying the four candidate sites in detail, with a particular focus on identifying regions of fine-grain, sampleable material from upcoming, high-resolution observations of each site. The boulder maps that citizen science counters helped create through observations earlier this year were used as one of many pieces of data considered when assessing each site’s safety. The data collected will be key to selecting the final two sites best suited for sample collection.

In order to further adapt to Bennu’s ruggedness, the OSIRIS-REx team has made other adjustments to its sample site identification process. The original mission plan envisioned a sample site with a radius of 82 feet (25 m). Boulder-free sites of that size don’t exist on Bennu, so the team has instead identified sites ranging from 16 to 33 feet (5 to 10 m) in radius. In order for the spacecraft to accurately target a smaller site, the team reassessed the spacecraft’s operational capabilities to maximize its performance. The mission also has tightened its navigation requirements to guide the spacecraft to the asteroid’s surface, and developed a new sampling technique called “Bullseye TAG,” which uses images of the asteroid surface to navigate the spacecraft all the way to the actual surface with high accuracy. The mission’s performance so far has demonstrated the new standards are within its capabilities.

"Although OSIRIS-REx was designed to collect a sample from an asteroid with a beach-like area, the extraordinary in-flight performance to date demonstrates that we will be able to meet the challenge that the rugged surface of Bennu presents," said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. "That extraordinary performance encompasses not only the spacecraft and instruments, but also the team who continues to meet every challenge that Bennu throws at us."

The four candidate sample sites on Bennu are designated Nightingale, Kingfisher, Osprey, and Sandpiper – all birds native to Egypt. The naming theme complements the mission’s two other naming conventions – Egyptian deities (the asteroid and spacecraft) and mythological birds (surface features on Bennu).

The four sites are diverse in both geographic location and geological features. While the amount of sampleable material in each site has yet to be determined, all four sites have been evaluated thoroughly to ensure the spacecraft’s safety as it descends to, touches and collects a sample from the asteroid’s surface.

Nightingale is the northern-most site, situated at 56 degrees north latitude on Bennu. There are multiple possible sampling regions in this site, which is set in a small crater encompassed by a larger crater 459 feet (140 m) in diameter. The site contains mostly fine-grain, dark material and has the lowest albedo, or reflection, and surface temperature of the four sites.

Kingfisher is located in a small crater near Bennu’s equator at 11 degrees north latitude. The crater has a diameter of 26 feet (8 m) and is surrounded by boulders, although the site itself is free of large rocks. Among the four sites, Kingfisher has the strongest spectral signature for hydrated minerals.

Osprey is set in a small crater, 66 feet (20 m) in diameter, which is also located in Bennu’s equatorial region at 11 degrees north latitude. There are several possible sampling regions within the site. The diversity of rock types in the surrounding area suggests that the regolith within Osprey may also be diverse. Osprey has the strongest spectral signature of carbon-rich material among the four sites.

Sandpiper is located in Bennu’s southern hemisphere, at 47 degrees south latitude. The site is in a relatively flat area on the wall of a large crater 207 ft (63 m) in diameter. Hydrated minerals are also present, which indicates that Sandpiper may contain unmodified water-rich material.

This fall, OSIRIS-REx will begin detailed analyses of the four candidate sites during the mission’s reconnaissance phase. During the first stage of this phase, the spacecraft will execute high passes over each of the four sites from a distance of 0.8 miles (1.29 km) to confirm they are safe and contain sampleable material. Closeup imaging also will map the features and landmarks required for the spacecraft’s autonomous navigation to the asteroid’s surface. The team will use the data from these passes to select the final primary and backup sample collection sites in December.

The second and third stages of reconnaissance will begin in early 2020 when the spacecraft will perform passes over the final two sites at lower altitudes and take even higher resolution observations of the surface to identify features, such as groupings of rocks that will be used to navigate to the surface for sample collection. OSIRIS-REx sample collection is scheduled for the latter half of 2020, and the spacecraft will return the asteroid samples to Earth on Sept. 24, 2023.

Goddard provides overall mission management, systems engineering, and safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.

****

Monday, August 05, 2019

Testing the Eyes on America's Next Mars Rover...

Engineers test several cameras that were recently installed on the Mars 2020 rover at NASA's Jet Propulsion Laboratory near Pasadena, California...on July 23, 2019.
NASA / JPL - Caltech

NASA 'Optometrists' Verify Mars 2020 Rover's 20/20 Vision (News Release)

Equipped with visionary science instruments, the Mars 2020 rover underwent an "eye" exam after several cameras were installed on it. The rover contains an armada of imaging capabilities, from wide-angle landscape cameras to narrow-angle high-resolution zoom lens cameras.

"We completed the machine-vision calibration of the forward-facing cameras on the rover," said Justin Maki, chief engineer for imaging and the imaging scientist for Mars 2020 at JPL. "This measurement is critical for accurate stereo vision, which is an important capability of the vehicle."

To perform the calibration, the 2020 team imaged target boards that feature grids of dots, placed at distances ranging from 1 to 44 yards (1 to 40 meters) away. The target boards were used to confirm that the cameras meet the project's requirements for resolution and geometric accuracy. The cameras tested included two Navcams, four Hazcams, the SuperCam and the two Mastcam-Z cameras.

"We tested every camera on the front of the rover chassis and also those mounted on the mast," said Maki. "Characterizing the geometric alignment of all these imagers is important for driving the vehicle on Mars, operating the robotic arm and accurately targeting the rover's laser."

In the coming weeks, the imagers on the back of the rover body and on the turret at the end of the rover's arm will undergo similar calibration.

Mounted on the rover's remote sensing mast, the Navcams (navigation cameras) will acquire panoramic 3D image data that will support route planning, robotic-arm operations, drilling and sample acquisition. The Navcams can work in tandem with the Hazcams (hazard-avoidance cameras) mounted on the lower portion of the rover chassis to provide complementary views of the terrain to safeguard the rover against getting lost or crashing into unexpected obstacles. They'll be used by software enabling the Mars 2020 rover to perform self-driving over the Martian terrain.

Along with its laser and spectrometers, SuperCam's imager will examine Martian rocks and soil, seeking organic compounds that could be related to past life on Mars. The rover's two Mastcam-Z high-resolution cameras will work together as a multispectral, stereoscopic imaging instrument to enhance the Mars 2020 rover's driving and core-sampling capabilities. The Mastcam-Z cameras will also enable science team members to observe details in rocks and sediment at any location within the rover's field of view, helping them piece together the planet's geologic history.

JPL is building and will manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency's headquarters in Washington. NASA will use Mars 2020 and other missions, including to the Moon, to prepare for human exploration of the Red Planet. The agency intends to establish a sustained human presence on and around the Moon by 2028 through NASA's Artemis lunar exploration plans.

To submit your name to travel to Mars with NASA's 2020 mission and obtain a souvenir boarding pass to the Red Planet, go here by Sept. 30, 2019:

https://go.nasa.gov/Mars2020Pass

Source: Jet Propulsion Laboratory