Wednesday, February 24, 2021

SOLAR PROBE PLUS Update: Parker Catches a Close-up Glimpse of the Evening Star...

An image of Venus that was taken by the WISPR instrument aboard NASA's Parker Solar Probe...on July 11, 2020.
NASA / Johns Hopkins APL / Naval Research Laboratory / Guillermo Stenborg and Brendan Gallagher

Parker Solar Probe Offers Stunning View of Venus (News Release)

NASA’s Parker Solar Probe captured stunning views of Venus during its close flyby of the planet in July 2020.

Though Parker Solar Probe’s focus is the Sun, Venus plays a critical role in the mission: The spacecraft whips by Venus a total of seven times over the course of its seven-year mission, using the planet’s gravity to bend the spacecraft’s orbit. These Venus gravity assists allow Parker Solar Probe to fly closer and closer to the Sun on its mission to study the dynamics of the solar wind close to its source.

But — along with the orbital dynamics — these passes can also yield some unique and even unexpected views of the inner solar system. During the mission’s third Venus gravity assist on July 11, 2020, the onboard Wide-field Imager for Parker Solar Probe, or WISPR, captured a striking image of the planet’s nightside from 7,693 miles away.

WISPR is designed to take images of the solar corona and inner heliosphere in visible light, as well as images of the solar wind and its structures as they approach and fly by the spacecraft. At Venus, the camera detected a bright rim around the edge of the planet that may be nightglow — light emitted by oxygen atoms high in the atmosphere that recombine into molecules in the nightside. The prominent dark feature in the center of the image is Aphrodite Terra, the largest highland region on the Venusian surface. The feature appears dark because of its lower temperature, about 85 degrees Fahrenheit (30 degrees Celsius) cooler than its surroundings.

That aspect of the image took the team by surprise, said Angelos Vourlidas, the WISPR project scientist from the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, who coordinated a WISPR imaging campaign with Japan’s Venus-orbiting Akatsuki mission. “WISPR is tailored and tested for visible light observations. We expected to see clouds, but the camera peered right through to the surface.”

“WISPR effectively captured the thermal emission of the Venusian surface,” said Brian Wood, an astrophysicist and WISPR team member from the U.S. Naval Research Laboratory in Washington, D.C. “It’s very similar to images acquired by the Akatsuki spacecraft at near-infrared wavelengths.”

This surprising observation sent the WISPR team back to the lab to measure the instrument’s sensitivity to infrared light. If WISPR can indeed pick up near-infrared wavelengths of light, the unforeseen capability would provide new opportunities to study dust around the Sun and in the inner solar system. If it can’t pick up extra infrared wavelengths, then these images — showing signatures of features on Venus’ surface — may have revealed a previously unknown “window” through the Venusian atmosphere.

“Either way,” Vourlidas said, “some exciting science opportunities await us.”

For more insight into the July 2020 images, the WISPR team planned a set of similar observations of the Venusian nightside during Parker Solar Probe’s latest Venus flyby on Feb. 20, 2021. Mission team scientists expect to receive and process that data for analysis by the end of April.

“We are really looking forward to these new images,” said Javier Peralta, a planetary scientist from the Akatsuki team, who first suggested a Parker Solar Probe campaign with Akatsuki, which has been orbiting Venus since 2015. “If WISPR can sense the thermal emission from the surface of Venus and nightglow — most likely from oxygen — at the limb of the planet, it can make valuable contributions to studies of the Venusian surface.”

Parker Solar Probe is part of NASA’s Living with a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living with a Star program is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. Johns Hopkins APL designed, built and operates the spacecraft.

Source: NASA.Gov

Monday, February 22, 2021

A BIG Perseverance Update: NASA Releases First-of-Its-Kind Footage of the Mars Landing!

Video screenshots from three onboard cameras showing NASA's Perseverance rover undergoing the 'sky crane' maneuver as it is gently lowered towards the Martian suface by its rocket-powered descent stage...on February 18, 2021.
NASA / JPL - Caltech

NASA’s Mars Perseverance Rover Provides Front-Row Seat to Landing, First Audio Recording of Red Planet (Press Release)

New video from NASA’s Mars 2020 Perseverance rover chronicles major milestones during the final minutes of its entry, descent, and landing (EDL) on the Red Planet on Feb. 18 as the spacecraft plummeted, parachuted, and rocketed toward the surface of Mars. A microphone on the rover also has provided the first audio recording of sounds from Mars.

From the moment of parachute inflation, the camera system covers the entirety of the descent process, showing some of the rover’s intense ride to Mars’ Jezero Crater. The footage from high-definition cameras aboard the spacecraft starts 7 miles (11 kilometers) above the surface, showing the supersonic deployment of the most massive parachute ever sent to another world, and ends with the rover’s touchdown in the crater.

A microphone attached to the rover did not collect usable data during the descent, but the commercial off-the-shelf device survived the highly dynamic descent to the surface and obtained sounds from Jezero Crater on Feb. 20. About 10 seconds into the 60-second recording, a Martian breeze is audible for a few seconds, as are mechanical sounds of the rover operating on the surface.

“For those who wonder how you land on Mars – or why it is so difficult – or how cool it would be to do so – you need look no further,” said acting NASA Administrator Steve Jurczyk. “Perseverance is just getting started, and already has provided some of the most iconic visuals in space exploration history. It reinforces the remarkable level of engineering and precision that is required to build and fly a vehicle to the Red Planet.”

Also released Monday was the mission’s first panorama of the rover’s landing location, taken by the two Navigation Cameras located on its mast. The six-wheeled robotic astrobiologist, the fifth rover the agency has landed on Mars, currently is undergoing an extensive checkout of all its systems and instruments.

“This video of Perseverance’s descent is the closest you can get to landing on Mars without putting on a pressure suit,” said Thomas Zurbuchen, NASA associate administrator for science. “It should become mandatory viewing for young women and men who not only want to explore other worlds and build the spacecraft that will take them there, but also want to be part of the diverse teams achieving all the audacious goals in our future.”

The world’s most intimate view of a Mars landing begins about 230 seconds after the spacecraft entered the Red Planet’s upper atmosphere at 12,500 mph (20,100 kph). The video opens in black, with the camera lens still covered within the parachute compartment. Within less than a second, the spacecraft’s parachute deploys and transforms from a compressed 18-by-26 inch (46-by-66 centimeter) cylinder of nylon, Technora, and Kevlar into a fully inflated 70.5-foot-wide (21.5-meter-wide) canopy – the largest ever sent to Mars. The tens of thousands of pounds of force that the parachute generates in such a short period stresses both the parachute and the vehicle.

“Now we finally have a front-row view to what we call ‘the seven minutes of terror’ while landing on Mars,” said Michael Watkins, director of NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission for the agency. “From the explosive opening of the parachute to the landing rockets’ plume sending dust and debris flying at touchdown, it’s absolutely awe-inspiring.”

The video also captures the heat shield dropping away after protecting Perseverance from scorching temperatures during its entry into the Martian atmosphere. The downward view from the rover sways gently like a pendulum as the descent stage, with Perseverance attached, hangs from the back shell and parachute. The Martian landscape quickly pitches as the descent stage – the rover’s free-flying “jetpack,” which decelerates using rocket engines and then lowers the rover on cables to the surface – breaks free, its eight thrusters engaging to put distance between it and the now-discarded back shell and the parachute.

Then, 80 seconds and 7,000 feet (2,130 meters) later, the cameras capture the descent stage performing the sky crane maneuver over the landing site – the plume of its rocket engines kicking up dust and small rocks that have likely been in place for billions of years.

“We put the EDL camera system onto the spacecraft not only for the opportunity to gain a better understanding of our spacecraft’s performance during entry, descent, and landing, but also because we wanted to take the public along for the ride of a lifetime – landing on the surface of Mars,” said Dave Gruel, lead engineer for Mars 2020 Perseverance’s EDL camera and microphone subsystem at JPL. “We know the public is fascinated with Mars exploration, so we added the EDL Cam microphone to the vehicle because we hoped it could enhance the experience, especially for visually-impaired space fans, and engage and inspire people around the world.”

The footage ends with Perseverance’s aluminum wheels making contact with the surface at 1.61 mph (2.6 kilometers per second), and then pyrotechnically-fired blades sever the cables connecting it to the still-hovering descent stage. The descent stage then climbs and accelerates away in the preplanned flyaway maneuver.

“If this were an old Western movie, I’d say the descent stage was our hero riding slowly into the setting Sun, but the heroes are actually back here on Earth,” said Matt Wallace, Mars 2020 Perseverance deputy project manager at JPL. “I’ve been waiting 25 years for the opportunity to see a spacecraft land on Mars. It was worth the wait. Being able to share this with the world is a great moment for our team.”

Five commercial off-the-shelf cameras located on three different spacecraft components collected the imagery. Two cameras on the back shell, which encapsulated the rover on its journey, took pictures of the parachute inflating. A camera on the descent stage provided a downward view – including the top of the rover – while two on the rover chassis offered both upward and downward perspectives.

The rover team continues its initial inspection of Perseverance’s systems and its immediate surroundings. Monday, the team will check out five of the rover’s seven instruments and take the first weather observations with the Mars Environmental Dynamics Analyzer instrument. In the coming days, a 360-degree panorama of Jezero by the Mastcam-Z should be transmitted down, providing the highest resolution look at the road ahead.

****

Saturday, February 20, 2021

Perseverance Update #2: Ingenuity Phones Home...

An illustration of the Ingenuity helicopter soaring in the Martian air while the Perseverance rover observes from the surface.
NASA / JPL - Caltech

NASA’s Mars Helicopter Reports In (News Release - February 19)

The technology demonstration has phoned home from where it is attached to the belly of NASA’s Perseverance rover.

Mission controllers at NASA’s Jet Propulsion Laboratory in Southern California have received the first status report from the Ingenuity Mars Helicopter, which landed Feb. 18, 2021, at Jezero Crater attached to the belly of the agency’s Mars 2020 Perseverance rover. The downlink, which arrived at 3:30 p.m. PST (6:30 p.m. EST) via a connection through the Mars Reconnaissance Orbiter, indicates that both the helicopter, which will remain attached to the rover for 30 to 60 days, and its base station (an electrical box on the rover that stores and routes communications between the rotorcraft and Earth) are operating as expected.

“There are two big-ticket items we are looking for in the data: the state of charge of Ingenuity’s batteries as well as confirmation the base station is operating as designed, commanding heaters to turn off and on to keep the helicopter’s electronics within an expected range,” said Tim Canham, Ingenuity Mars Helicopter operations lead at JPL. “Both appear to be working great. With this positive report, we will move forward with tomorrow’s charge of the helicopter’s batteries.”

Ensuring that Ingenuity has plenty of stored energy aboard to maintain heating and other vital functions while also maintaining optimal battery health is essential to the success of the Mars Helicopter. The one-hour power-up will boost the rotorcraft’s batteries to about 30% of its total capacity. A few days after that, they’ll be charged again to reach 35%, with future charging sessions planned weekly while the helicopter is attached to the rover. The data downlinked during tomorrow’s charge sessions will be compared to battery-charging sessions done during cruise to Mars to help the team plan future charging sessions.

Like much of the 4-pound (2-kilogram) rotorcraft, the six lithium-ion batteries are off-the-shelf. They currently receive recharges from the rover’s power supply. Once Ingenuity is deployed to Mars’ surface, the helicopter’s batteries will be charged solely by its own solar panel.

After Perseverance deploys Ingenuity to the surface, the helicopter will then have a 30-Martian-day (31-Earth-day) experimental flight test window. If Ingenuity survives its first bone-chilling Martian nights – where temperatures dip as low as minus 130 degrees Fahrenheit (minus 90 degrees Celsius) – the team will proceed with the first flight of an aircraft on another world.

If Ingenuity succeeds in taking off and hovering during its first flight, over 90% of the project’s goals will have been achieved. If the rotorcraft lands successfully and remains operable, up to four more flights could be attempted, each one building on the success of the last.

“We are in uncharted territory, but this team is used to that,” said MiMi Aung, project manager for the Ingenuity Mars Helicopter at JPL. “Just about every milestone from here through the end of our flight demonstration program will be a first, and each has to succeed for us to go on to the next. We’ll enjoy this good news for the moment, but then we have to get back to work.”

Next-generation rotorcraft, the descendants of Ingenuity, could add an aerial dimension to future exploration of the Red Planet. These advanced robotic flying vehicles would offer a unique viewpoint not provided by current orbiters high overhead or by rovers and landers on the ground, providing high-definition images and reconnaissance for robots or humans, and enable access to terrain that is difficult for rovers to reach.

More About Ingenuity

The Ingenuity Mars Helicopter was built by NASA’s Jet Propulsion Laboratory in Southern California which also manages the technology demonstration for NASA Headquarters in Washington. NASA’s Ames and Langley Research Centers provided significant flight performance analysis and technical assistance. AeroVironment Inc., Qualcomm, Snapdragon, and SolAero also provided design assistance and major vehicle components. The Mars Helicopter Delivery System was designed and manufactured by Lockheed Space Systems in Denver.

Source: Jet Propulsion Laboratory

Friday, February 19, 2021

Perseverance Update: New Photos Have Been Transmitted Home by Mars' Latest Robotic Resident...

A video screenshot of NASA's Perseverance rover as seen by its rocket-powered descent stage while it approached the surface at Mars' Jezero Crater for a landing...on February 18, 2021.
NASA / JPL - Caltech

NASA’s Perseverance Rover Sends Sneak Peek of Mars Landing (Press Release)

Less than a day after NASA’s Mars 2020 Perseverance rover successfully landed on the surface of Mars, engineers and scientists at the agency’s Jet Propulsion Laboratory in Southern California were hard at work, awaiting the next transmissions from Perseverance. As data gradually came in, relayed by several spacecraft orbiting the Red Planet, the Perseverance team were relieved to see the rover’s health reports, which showed everything appeared to be working as expected.

Adding to the excitement was a high-resolution image taken during the rover’s landing. While NASA’s Mars Curiosity rover sent back a stop-motion movie of its descent, Perseverance’s cameras are intended to capture video of its touchdown and this new still image was taken from that footage, which is still being relayed to Earth and processed.

Unlike with past rovers, the majority of Perseverance’s cameras capture images in color. After landing, two of the Hazard Cameras (Hazcams) captured views from the front and rear of the rover, showing one of its wheels in the Martian dirt. Perseverance got a close-up from NASA’s eye in the sky, as well: NASA’s Mars Reconnaissance Orbiter, which used a special high-resolution camera to capture the spacecraft sailing into Jezero Crater, with its parachute trailing behind. The High Resolution Camera Experiment (HiRISE) camera did the same for Curiosity in 2012. JPL leads the orbiter’s mission, while the HiRISE instrument is led by the University of Arizona.

Several pyrotechnic charges are expected to fire later on Friday, releasing Perseverance’s mast (the “head” of the rover) from where it is fixed on the rover’s deck. The Navigation Cameras (Navcams), which are used for driving, share space on the mast with two science cameras: the zoomable Mastcam-Z and a laser instrument called SuperCam. The mast is scheduled to be raised Saturday, Feb. 20, after which the Navcams are expected to take panoramas of the rover’s deck and its surroundings.

In the days to come, engineers will pore over the rover’s system data, updating its software and beginning to test its various instruments. In the following weeks, Perseverance will test its robotic arm and take its first, short drive. It will be at least one or two months until Perseverance will find a flat location to drop off Ingenuity, the mini-helicopter attached to the rover’s belly, and even longer before it finally hits the road, beginning its science mission and searching for its first sample of Martian rock and sediment.

****

NASA's Perseverance rover--still encased inside its aeroshell and under a parachute while approaching its landing site at Mars' Jezero Crater--as seen by the Mars Reconnaissance Orbiter 700 kilometers (435 miles) away in space...on February 18, 2021.
NASA / JPL / University of Arizona

A close-up of one of Perseverance's six large wheels...as seen by one of its Hazard Cameras on February 18, 2021.
NASA / JPL - Caltech

Perseverance's first first-color snapshot of its surroundings at Mars' Jezero Crater...as seen by one of its Hazard Cameras on February 18, 2021.
NASA / JPL - Caltech

Thursday, February 18, 2021

WELCOME TO MARS, PERSEVERANCE AND INGENUITY!!!

One of the first images taken by NASA's Perseverance rover shortly after it successfully landed at Mars' Jezero Crater...on February 18, 2021.
NASA / JPL - Caltech

Touchdown! NASA's Mars Perseverance Rover Safely Lands on Red Planet (Press Release)

The largest, most advanced rover NASA has sent to another world touched down on Mars Thursday, after a 203-day journey traversing 293 million miles (472 million kilometers). Confirmation of the successful touchdown was announced in mission control at NASA’s Jet Propulsion Laboratory in Southern California at 3:55 p.m. EST (12:55 p.m. PST).

Packed with groundbreaking technology, the Mars 2020 mission launched July 30, 2020, from Cape Canaveral Space Force Station in Florida. The Perseverance rover mission marks an ambitious first step in the effort to collect Mars samples and return them to Earth.

“This landing is one of those pivotal moments for NASA, the United States, and space exploration globally – when we know we are on the cusp of discovery and sharpening our pencils, so to speak, to rewrite the textbooks,” said acting NASA Administrator Steve Jurczyk. “The Mars 2020 Perseverance mission embodies our nation’s spirit of persevering even in the most challenging of situations, inspiring, and advancing science and exploration. The mission itself personifies the human ideal of persevering toward the future and will help us prepare for human exploration of the Red Planet in the 2030s.”

About the size of a car, the 2,263-pound (1,026-kilogram) robotic geologist and astrobiologist will undergo several weeks of testing before it begins its two-year science investigation of Mars’ Jezero Crater. While the rover will investigate the rock and sediment of Jezero’s ancient lakebed and river delta to characterize the region’s geology and past climate, a fundamental part of its mission is astrobiology, including the search for signs of ancient microbial life. To that end, the Mars Sample Return campaign, being planned by NASA and ESA (European Space Agency), will allow scientists on Earth to study samples collected by Perseverance to search for definitive signs of past life using instruments too large and complex to send to the Red Planet.

“Because of today’s exciting events, the first pristine samples from carefully documented locations on another planet are another step closer to being returned to Earth,” said Thomas Zurbuchen, associate administrator for science at NASA. “Perseverance is the first step in bringing back rock and regolith from Mars. We don’t know what these pristine samples from Mars will tell us. But what they could tell us is monumental – including that life might have once existed beyond Earth.”

Some 28 miles (45 kilometers) wide, Jezero Crater sits on the western edge of Isidis Planitia, a giant impact basin just north of the Martian equator. Scientists have determined that 3.5 billion years ago the crater had its own river delta and was filled with water.

The power system that provides electricity and heat for Perseverance through its exploration of Jezero Crater is a Multi-Mission Radioisotope Thermoelectric Generator, or MMRTG. The U.S. Department of Energy (DOE) provided it to NASA through an ongoing partnership to develop power systems for civil space applications.

Equipped with seven primary science instruments, the most cameras ever sent to Mars, and its exquisitely complex sample caching system – the first of its kind sent into space – Perseverance will scour the Jezero region for fossilized remains of ancient microscopic Martian life, taking samples along the way.

“Perseverance is the most sophisticated robotic geologist ever made, but verifying that microscopic life once existed carries an enormous burden of proof,” said Lori Glaze, director of NASA’s Planetary Science Division. “While we’ll learn a lot with the great instruments we have aboard the rover, it may very well require the far more capable laboratories and instruments back here on Earth to tell us whether our samples carry evidence that Mars once harbored life.”

Paving the Way for Human Missions

“Landing on Mars is always an incredibly difficult task and we are proud to continue building on our past success,” said JPL Director Michael Watkins. “But, while Perseverance advances that success, this rover is also blazing its own path and daring new challenges in the surface mission. We built the rover not just to land but to find and collect the best scientific samples for return to Earth, and its incredibly complex sampling system and autonomy not only enable that mission, they set the stage for future robotic and crewed missions.”

The Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2) sensor suite collected data about Mars’ atmosphere during entry, and the Terrain-Relative Navigation system autonomously guided the spacecraft during final descent. The data from both are expected to help future human missions land on other worlds more safely and with larger payloads.

On the surface of Mars, Perseverance’s science instruments will have an opportunity to scientifically shine. Mastcam-Z is a pair of zoomable science cameras on Perseverance’s remote sensing mast, or head, that creates high-resolution, color 3D panoramas of the Martian landscape. Also located on the mast, the SuperCam uses a pulsed laser to study the chemistry of rocks and sediment and has its own microphone to help scientists better understand the property of the rocks, including their hardness.

Located on a turret at the end of the rover’s robotic arm, the Planetary Instrument for X-ray Lithochemistry (PIXL) and the Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instruments will work together to collect data on Mars’ geology close-up. PIXL will use an X-ray beam and suite of sensors to delve into a rock’s elemental chemistry. SHERLOC’s ultraviolet laser and spectrometer, along with its Wide Angle Topographic Sensor for Operations and eNgineering (WATSON) imager, will study rock surfaces, mapping out the presence of certain minerals and organic molecules, which are the carbon-based building blocks of life on Earth.

The rover chassis is home to three science instruments, as well. The Radar Imager for Mars’ Subsurface Experiment (RIMFAX) is the first ground-penetrating radar on the surface of Mars and will be used to determine how different layers of the Martian surface formed over time. The data could help pave the way for future sensors that hunt for subsurface water ice deposits.

Also with an eye on future Red Planet explorations, the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) technology demonstration will attempt to manufacture oxygen out of thin air – the Red Planet’s tenuous and mostly carbon dioxide atmosphere. The rover’s Mars Environmental Dynamics Analyzer (MEDA) instrument, which has sensors on the mast and chassis, will provide key information about present-day Mars weather, climate, and dust.

Currently attached to the belly of Perseverance, the diminutive Ingenuity Mars Helicopter is a technology demonstration that will attempt the first powered, controlled flight on another planet.

Project engineers and scientists will now put Perseverance through its paces, testing every instrument, subsystem, and subroutine over the next month or two. Only then will they deploy the helicopter to the surface for the flight test phase. If successful, Ingenuity could add an aerial dimension to exploration of the Red Planet in which such helicopters serve as scouts or make deliveries for future astronauts away from their base.

Once Ingenuity’s test flights are complete, the rover’s search for evidence of ancient microbial life will begin in earnest.

“Perseverance is more than a rover, and more than this amazing collection of men and women that built it and got us here,” said John McNamee, project manager of the Mars 2020 Perseverance rover mission at JPL. “It is even more than the 10.9 million people who signed up to be part of our mission. This mission is about what humans can achieve when they persevere. We made it this far. Now, watch us go.”

More About the Mission

A primary objective for Perseverance’s mission on Mars is astrobiology research, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate and be the first mission to collect and cache Martian rock and regolith, paving the way for human exploration of the Red Planet.

Subsequent NASA missions, in cooperation with ESA, will send spacecraft to Mars to collect these cached samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.

JPL, a division of Caltech in Pasadena, California, manages the Mars 2020 Perseverance mission and the Ingenuity Mars Helicopter technology demonstration for NASA.

****

A second image, taken from a camera at the rear of the rover, that was transmitted by Perseverance shortly after it successfully landed at Mars' Jezero Crater...on February 18, 2021.
NASA / JPL - Caltech

Mission controllers at NASA's Jet Propulsion Laboratory near Pasadena, California, watch as new images come in shortly after the Perseverance rover successfully touched down at Mars' Jezero Crater...on February 18, 2021.
NASA / Bill Ingalls

At the White House, President Joe Biden watches NASA TV coverage of the Perseverance rover's arrival at Mars' Jezero Crater...on February 18, 2021.
The White House

A snapshot of the three microchips bearing the names of 10.9 million people (including Yours Truly) on the Perseverance rover.
NASA

My participation certificate for NASA's Mars 2020 mission.

Wednesday, February 17, 2021

Perseverance Update: TOMORROW'S THE DAY!!!

A computer-generated screenshot showing the Perseverance rover being lowered from its rocket-powered descent stage onto the surface of Mars...which will actually take place tomorrow, February 18.
NASA

DON'T FORGET: 11:15 AM, Pacific Standard Time (2:15 PM, Eastern Standard Time) is when NASA will begin live coverage of tomorrow's much-anticipated landing of the Perseverance rover and Ingenuity helicopter on the surface of Mars! 12:55 PM, PST (3:55 PM, EST) is when Perseverance will hopefully touch down on the Red Planet. Let's all cross our fingers that the centerpiece of the Mars 2020 mission will join America's growing family of rovers and landers (behind Curiosity and InSight, the last-remaining active robots on the Martian soil) at Mars less than 24 hours from now.

And as a reminder, click on this NASA page to see where Perseverance and Ingenuity are currently located in space. Happy Hump Day!

A computer-generated screenshot showing the Mars 2020 spacecraft's current position from the Red Planet...on February 17, 2021.
NASA / JPL Eyes

Monday, February 15, 2021

Peregrine Update: The Vulcan Centaur Rocket Will Soon Be Ready for Their Inaugural Flight to the Moon Later This Year...

The Pathfinder Tanking Test (PTT) booster for the United Launch Alliance's (ULA) Vulcan Centaur rocket is placed atop its mobile launcher platform inside the Vertical Integration Facility (VIF) at Cape Canaveral Space Force Station (CCSFS) in Florida...on February 15, 2021.
United Launch Alliance

Happy Presidents' Day, fellow Yanks, and a Happy Monday to everyone else! Just thought I'd share these photos that were released by the United Launch Alliance (ULA) earlier today...showing the Pathfinder Tanking Test (PTT) booster for the Vulcan Centaur rocket being lifted onto its mobile launcher platform (MLP) inside the Vertical Integration Facility at Cape Canaveral Space Force Station (CCSFS) in Florida. The PTT vehicle—which will eventually fly next year after it is outfitted with flightworthy BE-4 engines from the Jeff Bezos-owned company Blue Origin—arrived at Port Canaveral near CCSFS last Friday, after an 8-day sea voyage aboard ULA's Rocket Ship that began at the company's manufacturing facility in Decatur, Alabama. Today's activity was known as the Launch Vehicle On Stand (LVOS) operation...with the PTT article about to undergo a series of tests atop its MLP before it is rolled out to the pad at Space Launch Complex (SLC)-41 sometime in the spring to undergo a series of liquid oxygen and liquified natural gas (the rocket fuel that Vulcan Centaur will use) loading procedures.

The full-scale Structural Test Model for Astrobotic's Peregrine lunar lander...which is set to head to the Moon aboard ULA's Vulcan Centaur rocket later this year.

So how is this relevant to Astrobotic's Peregrine lunar lander (shown above), you ask? Well, Peregrine is scheduled to launch to the Moon aboard a Vulcan Centaur later this year...and the commencement of pathfinder activities for this new heavy-lift rocket in Florida is the latest sign that the maiden flight of Astrobotic's four-legged spacecraft is soon underway. Once the LVOS campaign at SLC-41 is complete, the PTT vehicle will be removed from the MLP and replaced with the actual Vulcan Centaur rocket that will send Peregrine to our closest celestial neighbor 239,000 miles away. Assuming the landing goes well, Peregrine will become the first privately-made spacecraft to safely touch down on the lunar surface. And if that's the case, I look forward to posting a Blog entry immediately afterwards to show why I have a personal stake in this exciting mission! Stay tuned.

The PTT booster for ULA's Vulcan Centaur rocket is transported to the VIF at CCSFS in Florida for Launch Vehicle On Stand (LVOS) operations...on February 15, 2021.
United Launch Alliance

LVOS operations commence as the Vulcan Centaur's PTT booster is hoisted into the air prior to being transported into the VIF at CCSFS in Florida...on February 15, 2021.
United Launch Alliance

LVOS operations continue as the Vulcan Centaur's PTT booster continues to be hoisted into the air prior to being transported into the VIF at CCSFS in Florida...on February 15, 2021.
United Launch Alliance

The Vulcan Centaur's PTT booster is now placed in vertical prior to being installed atop its mobile launcher platform inside the VIF at CCSFS in Florida...on February 15, 2021.
United Launch Alliance

Sunday, February 14, 2021

Photo of the Day: Hope's First Image at the Red Planet...

An image of Mars that was taken by the United Arab Emirates' Hope spacecraft the day after it entered orbit around the Red Planet...on February 10, 2021.
Mohammed Bin Rashid Space Centre

Happy Valentine's Day, everyone! Just thought I'd share this photo of Mars that was taken by the Hope spacecraft the day after it successfully entered orbit around the Red Planet. The United Arab Emirates-managed probe was 24,700 kilometers (15,350 miles) above the barren, crimson world when this image was taken. Pretty cool.

Only four days till NASA's Perseverance rover and Ingenuity helicopter hopefully join Hope at the Red Planet. Landing at Mars' Jezero Crater is set to occur at 12:55 PM, Pacific Standard Time (3:55 PM, Eastern Standard Time) on Thursday, February 18. Can't wait! Click on this NASA page to see where Perseverance and Ingenuity are currently located in space.

A computer-generated screenshot showing the Mars 2020 spacecraft's current position from the Red Planet...on February 14, 2021.
NASA / JPL Eyes

Saturday, February 13, 2021

From Perseverance and Dragonfly to Beyond: The Department of Energy Sets Its Sight on Powering Future Interplanetary Voyagers...

A Multi-Mission Radioisotope Thermoelectric Generator...the same nuclear system that will be used to power NASA's Perseverance rover when it safely arrives on the surface of Mars next Thursday, February 18.
Office of Nuclear Energy

Aerojet Rocketdyne Receives Contract for Up to Two More MMRTGs for Future Deep Space Exploration Missions (Press Release - February 12)

LOS ANGELES, Calif. – Aerojet Rocketdyne recently received a contract award to deliver up to two Multi-Mission Radioisotope Thermoelectric Generators (MMRTG) to the U.S. Department of Energy (DOE) for use in future planetary science missions. MMRTGs are radioisotope power systems that have been used as reliable electrical power sources on multiple deep space missions, including NASA’s Perseverance Rover, which will land on Mars on Feb. 18.

Both MMRTGs will be fabricated and tested by Aerojet Rocketdyne and its teammate Teledyne Energy Systems prior to delivery to DOE’s Idaho National Laboratory, where the units will be fueled and readied for launch based on mission timelines.

“While the specific missions each unit will support have not yet been determined, the MMRTG is well suited for a variety of environments,” said Aerojet Rocketdyne CEO and President Eileen P. Drake. “The MMRTG is multi-mission capable, meaning that it can operate on the surface of planets and moons in a planetary atmosphere or in the vacuum of space.”

The MMRTG produces dependable electrical power by converting the heat from plutonium 238 radioactive decay into electricity. A single unit can provide reliable, long-lasting electrical power to a spacecraft or planetary rover, enabling exploration of the deepest corners of the solar system, where the great distance from the Sun dramatically reduces the effectiveness of solar arrays.

The MMRTG will power NASA’s Dragonfly mission to explore Saturn’s moon Titan, and is being considered for the Trident mission to explore Neptune’s largest moon Triton, which is believed to have a liquid ocean.

Source: Aerojet Rocketdyne

****

A computer-generated screenshot showing the Perseverance rover being lowered from its rocket-powered descent stage onto the surface of Mars...which will actually take place next Thursday, February 18.
NASA

An artist's concept of NASA's Dragonfly rotorcraft on the surface of Saturn's moon Titan.
NASA / Johns Hopkins APL

An image of Neptune's moon Triton that was taken by NASA's Voyager 2 spacecraft in August of 1989.
NASA / JPL - Caltech

Friday, February 12, 2021

InSight Update: The Robotic Lander Prepares to Dig In for the Martian Winter...

One of InSight's two large solar panels is completely covered in Martian dust...as seen by a camera on the lander's robotic arm.
NASA / JPL - Caltech

InSight Is Meeting the Challenge of Winter on Dusty Mars (News Release)

As dust collects on the solar panels and winter comes to Elysium Planitia, the team is following a plan to reduce science operations in order to keep the lander safe.

NASA’s InSight lander recently received a mission extension for another two years, giving it time to detect more quakes, dust devils, and other phenomena on the surface of Mars. While the mission team plans to continue collecting data well into 2022, the increasing dustiness of the spacecraft’s solar panels and the onset of the Martian winter led to a decision to conserve power and temporarily limit the operation of its instruments.

InSight was designed to be long-lasting: The stationary lander is equipped with solar panels, each spanning 7 feet (2 meters) across. InSight’s design was informed by that of the solar-powered Spirit and Opportunity rovers, with the expectation that the panels would gradually reduce their power output as dust settled on them but would have ample output to last through the two-year prime mission (completed in November 2020).

Additionally, InSight’s team chose a landing site in Elysium Planitia, a windswept plain on the Red Planet’s equator that receives lots of sunlight. It was hoped that passing dust devils might clean off the panels, which happened many times with Spirit and Opportunity, allowing them to last years past their design lifetime.

But despite InSight detecting hundreds of passing dust devils, none has been close enough to clean off those dinner-table-size panels since they unfurled on Mars in November 2018. Today, InSight’s solar arrays are producing just 27% of their dust-free capacity. That power has to be shared between science instruments, a robotic arm, the spacecraft’s radio, and a variety of heaters that keep everything in working order despite subfreezing temperatures. Since the windiest season of the Martian year has just ended, the team isn’t counting on a cleaning event in the coming months.

Mars is currently moving toward what’s called aphelion, the point in its orbit when it’s farthest away from the Sun. That means the already-weak sunlight on the Martian surface is growing even fainter, reducing power when InSight most needs its heaters to stay warm. Mars will start approaching the Sun again in July 2021, after which the team will begin to resume full science operations.

“The amount of power available over the next few months will really be driven by the weather,” said InSight’s project manager, Chuck Scott of NASA’s Jet Propulsion Laboratory in Southern California. “As part of our extended-mission planning, we developed an operations strategy to keep InSight safe through the winter so that we can resume science operations as solar intensity increases.” JPL leads the InSight mission, though the spacecraft and its solar panels were built by Lockheed Martin Space of Denver, Colorado.

Over the coming weeks and months, InSight scientists will be carefully selecting which instruments need to be switched off each day to preserve power for heaters and energy-intensive activities like radio communication. InSight’s weather sensors are likely to remain off much of the time (resulting in infrequent updates to the mission’s weather page), and all the instruments will have to be powered off for some period around aphelion.

Currently, power levels look strong enough to take the lander through the winter. But solar power generation on Mars is always a little uncertain. The Opportunity rover was forced to shut down after a series of dust storms darkened the Martian sky in 2019, and Spirit did not survive the Martian winter in 2010. If InSight were to run out of power due to a sudden dust storm, it is designed to be able to reboot itself when the sunlight returns if its electronics survived the extreme cold.

Later this week, InSight will be commanded to extend its robotic arm over the panels so a camera can take close-up images of the dust coating. Then the team will pulse the motors that unfurled each panel after landing to try to disturb the dust and see if the wind blows it away. The team considers this to be a long shot but worth the effort.

“The InSight team has put together a strong plan to safely navigate through winter and emerge on the other side ready to complete our extended science mission through 2022,” said Bruce Banerdt of JPL, InSight’s principal investigator. “We’ve got a great vehicle and a top-notch team; I’m looking forward to many more new discoveries from InSight in the future.”

Source: NASA.Gov