Thursday, October 21, 2021

Photos of the Day: Celestial Bodies Above Downtown LA...

Jupiter, the Moon and Saturn (in that order) loom high above the Wilshire Grand Center in downtown Los Angeles...on October 14, 2021.

Just thought I'd share these pictures that I took of downtown Los Angeles when I was at work in the City of Angels exactly one week ago today.

In the image above, Jupiter, the Moon and Saturn (in that order) loom high above the Wilshire Grand Center...while in the photo directly below, Jupiter and the Moon hover over other buildings in the L.A. skyline.

These pictures were taken from Los Angeles Center Studios—using my Google Pixel 4A smartphone. Happy Thursday!

Jupiter and the Moon loom high above downtown Los Angeles...on October 14, 2021.

Jupiter, the Moon and Saturn loom high above downtown Los Angeles...on October 14, 2021.

People mill about on the lot at Los Angeles Center Studios as the Wilshire Grand Center looms high in the background...on October 14, 2021.

The Wilshire Grand Center and other skyscrapers tower over a group of honeywagons at Los Angeles Center Studios...on October 14, 2021.

Tuesday, October 12, 2021

Hubble's Successor Will Soon Begin Launch Preparations in South America!

Carrying NASA's James Webb Space Telescope within her cargo hold, the French vessel MN Colibri arrives at French Guiana in South America...on October 12, 2021.
NASA / Chris Gunn

NASA’s Webb Space Telescope Arrives in French Guiana After Sea Voyage (Press Release)

NASA’s James Webb Space Telescope successfully arrived in French Guiana Tuesday, after a 16-day journey at sea. The 1,500-mile voyage took Webb from California through the Panama Canal to Port de Pariacabo on the Kourou River in French Guiana, on the northeastern coast of South America.

The world’s largest and most complex space science observatory will now be driven to its launch site, Europe’s Spaceport in Kourou, where it will begin two months of operational preparations before its launch on an Ariane 5 rocket, scheduled for Dec. 18.

Once operational, Webb will reveal insights about all phases of cosmic history – back to just after the Big Bang – and will help search for signs of potential habitability among the thousands of exoplanets scientists have discovered in recent years. The mission is an international collaboration led by NASA, in partnership with the European and Canadian space agencies.

“The James Webb Space Telescope is a colossal achievement, built to transform our view of the universe and deliver amazing science,” said NASA Administrator Bill Nelson. “Webb will look back over 13 billion years to the light created just after the Big Bang, with the power to show humanity the farthest reaches of space that we have ever seen. We are now very close to unlocking mysteries of the cosmos, thanks to the skills and expertise of our phenomenal team.”

After completing testing in August at Northrop Grumman's Space Park in Redondo Beach, California, the Webb team spent nearly a month folding, stowing, and preparing the massive observatory for shipment to South America. Webb was shipped in a custom-built, environmentally controlled container.

Late in the evening of Friday, Sept. 24, Webb traveled with a police escort 26 miles through the streets of Los Angeles, from Northrop Grumman's facility in Redondo Beach to Naval Weapons Station Seal Beach. There, it was loaded onto the MN Colibri, a French-flagged cargo ship that has previously transported satellites and spaceflight hardware to Kourou. The MN Colibri departed Seal Beach Sunday, Sept. 26 and entered the Panama Canal Tuesday, Oct. 5 on its way to Kourou.

The ocean journey represented the final leg of Webb's long, earthbound travels over the years. The telescope was assembled at NASA's Goddard Space Flight Center in Greenbelt, Maryland, starting in 2013. In 2017, it was shipped to NASA's Johnson Space Center in Houston for cryogenic testing at the historic “Chamber A” test facility, famous for its use during the Apollo missions. In 2018, Webb shipped to Space Park in California, where for three years it underwent rigorous testing to ensure its readiness for operations in the environment of space.

“A talented team across America, Canada, and Europe worked together to build this highly complex observatory. It’s an incredible challenge – and very much worthwhile. We are going to see things in the universe beyond what we can even imagine today,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate in Washington. “Now that Webb has arrived in Kourou, we’re getting it ready for launch in December – and then we will watch in suspense over the next few weeks and months as we launch and ready the largest space telescope ever built.”

After Webb is removed from its shipping container, engineers will run final checks on the observatory’s condition. Webb will then be configured for flight, which includes loading the spacecraft with propellants, before Webb is mounted on top of the rocket and enclosed in the fairing for launch.

"Webb’s arrival at the launch site is a momentous occasion,” said Gregory Robinson, Webb’s program director at NASA Headquarters. “We are very excited to finally send the world’s next great observatory into deep space. Webb has crossed the country and traveled by sea. Now it will take its ultimate journey by rocket one million miles from Earth, to capture stunning images of the first galaxies in the early universe that are certain to transform our understanding of our place in the cosmos.”

****

Carrying NASA's James Webb Space Telescope within her cargo hold, the French vessel MN Colibri docks at French Guiana's Port de Pariacabo in South America...on October 12, 2021.
NASA / Chris Gunn

Tuesday, October 05, 2021

A Lakers Legend Finally Calls It Quits...

Honoring 2-time NBA champion Pau Gasol...who officially announced his retirement from the league on October 5, 2021.

Good luck in your retirement, Pau Gasol! I found out earlier today that the 2-time L.A. Lakers champion—who spent the final year of his basketball career playing for the FC Barcelona team in Spain—is officially hanging up his jersey after playing in the NBA for almost 20 years.

After winning two titles with Kobe Bryant, Derek Fisher, Lamar Odom and company in 2009 and 2010, respectively, Gasol's jersey No. 16 should be hanging up on the rafters (preferably near Kobe's No. 24 jersey) at STAPLES Center as soon as possible. He did, after all, turn the Lake Show into a championship contender when he joined the team in February of 2008.

And of course, Gasol should become a Hall of Fame inductee within the next few years, too.

It was cool seeing Gasol play in person back on January 28, 2016...when his Chicago Bulls took on Kobe and the Lake Show at STAPLES Center. Gasol's team won that game decisively, 114-91, but it's all good.

Can't hate on a former player who gave the Lakers its 15th and 16th NBA championships in franchise history, respectively. Godspeed, Pau!

A photo I took of Pau Gasol walking past Kobe Bryant during the Lakers game against the Chicago Bulls at STAPLES Center...on January 28, 2016.

Two Los Angeles sports legends.


Saturday, October 02, 2021

BepiColombo Makes the First Flyby of Its Future Home Planet...

These snapshots of planet Mercury were taken by a camera aboard BepiColombo's Mercury Transfer Module...on October 1, 2021.
BepiColombo’s first views of Mercury (News Release)

The ESA/JAXA BepiColombo mission has captured its first views of its destination planet Mercury as it swooped past in a close gravity assist flyby last night.

The closest approach took place at 23:34 UTC on 1 October at an altitude of 199 km from the planet’s surface. Images from the spacecraft’s monitoring cameras, along with scientific data from a number of instruments, were collected during the encounter. The images were already downloaded over the course of Saturday morning, and a selection of first impressions are presented here.

“The flyby was flawless from the spacecraft point of view, and it’s incredible to finally see our target planet,” says Elsa Montagnon, Spacecraft Operations Manager for the mission.

The monitoring cameras provide black-and-white snapshots in 1024 x 1024 pixel resolution, and are positioned on the Mercury Transfer Module such that they also capture the spacecraft’s structural elements, including its antennas and the magnetometer boom.

Images were acquired from about five minutes after the time of close approach and up to four hours later. Because BepiColombo arrived on the planet’s nightside, conditions were not ideal to take images directly at the closest approach, thus the closest image was captured from a distance of about 1000 km.

“It was an incredible feeling seeing these almost-live pictures of Mercury,” says Valetina Galluzzi, co-investigator of BepiColombo’s SIMBIO-SYS imaging system that will be used once in Mercury orbit. “It really made me happy meeting the planet I have been studying since the very first years of my research career, and I am eager to work on new Mercury images in the future.”

“It was very exciting to see BepiColombo’s first images of Mercury, and to work out what we were seeing,” says David Rothery of the UK’s Open University who leads ESA’s Mercury Surface and Composition Working Group. “It has made me even more enthusiastic to study the top quality science data that we should get when we are in orbit around Mercury, because this is a planet that we really do not yet fully understand.”

Although the cratered surface looks rather like Earth’s Moon at first sight, Mercury has a much different history. Once its main science mission begins, BepiColombo’s two science orbiters – ESA’s Mercury Planetary Orbiter and JAXA’s Mercury Magnetospheric Orbiter – will study all aspects of mysterious Mercury from its core to surface processes, magnetic field and exosphere, to better understand the origin and evolution of a planet close to its parent star. For example, it will map the surface of Mercury and analyse its composition to learn more about its formation. One theory is that it may have begun as a larger body that was then stripped of most of its rock by a giant impact. This left it with a relatively large iron core, where its magnetic field is generated, and only a thin rocky outer shell.

Mercury has no equivalent to the ancient bright lunar highlands: its surface is dark almost everywhere, and was formed by vast outpourings of lava billions of years ago. These lava flows bear the scars of craters formed by asteroids and comets crashing onto the surface at speeds of tens of kilometers per hour. The floors of some of the older and larger craters have been flooded by younger lava flows, and there are also more than a hundred sites where volcanic explosions have ruptured the surface from below.

BepiColombo will probe these themes to help us understand this mysterious planet more fully, building on the data collected by NASA’s Messenger mission. It will tackle questions such as: What are the volatile substances that turn violently into gas to power the volcanic explosions? How did Mercury retain these volatiles if most of its rock was stripped away? How long did volcanic activity persist? How quickly does Mercury’s magnetic field change?

“In addition to the images we obtained from the monitoring cameras we also operated several science instruments on the Mercury Planetary Orbiter and Mercury Magnetospheric Orbiter,” adds Johannes Benkhoff, ESA’s BepiColombo project scientist. “I’m really looking forward to seeing these results. It was a fantastic night shift with fabulous teamwork, and with many happy faces.”

BepiColombo’s main science mission will begin in early 2026. It is making use of nine planetary flybys in total: one at Earth, two at Venus, and six at Mercury, together with the spacecraft’s solar electric propulsion system, to help steer into Mercury orbit. Its next Mercury flyby will take place 23 June 2022.

Source: European Space Agency

ABOVE: All images by ESA/BepiColombo/MTM

Thursday, September 30, 2021

QueSST Update: NASA's Next X-Plane Briefly Gets Its Nose...

The nose for NASA's X-59 QueSST aircraft is placed right next to the vehicle at Lockheed Martin's Skunk Works facility in Palmdale, California.
Lockheed Martin

X-59 Nose Makes an Appearance (News Release - September 22)

The X-59 Quiet SuperSonic Technology (QueSST) aircraft is taking shape at the Lockheed Martin Skunk Works facility in Palmdale, California. The team positioned the X-59 QueSST's nose at the front of the aircraft.

As one of the more recognizable features of the X-59, the nose makes up almost a third of the aircraft length and will be essential in shaping shock waves during supersonic flight, resulting in quiet sonic thumps instead of loud sonic booms. The nose was attached and then removed from the front of the aircraft in preparation for its shipment to Fort Worth, Texas where it will undergo additional testing.

The X-59 will fly at supersonic speeds above communities as part of the Low-Boom Flight Demonstration mission, during which NASA will gather community feedback to the sound of quiet supersonic flight. These findings will be shared with regulators to inform decisions on current restrictions of supersonic flight over land.

Source: NASA.Gov

****

An artist's concept of NASA's X-59 QueSST aircraft flying over a rural community in the United States.
NASA

Wednesday, September 22, 2021

Happy First Day of Autumn: A New Discovery Has Been Made by the InSight Mars Lander...

An image of the Wind and Thermal Shield dome that was placed atop the seismometer of NASA's InSight Mars lander...as seen on the 110th Martian day, or sol, of the mission.
NASA / JPL - Caltech

NASA’s InSight Finds Three Big Marsquakes, Thanks to Solar-Panel Dusting (News Release)

The lander cleared enough dust from one solar panel to keep its seismometer on through the summer, allowing scientists to study the three biggest quakes they’ve seen on Mars.

On Sept. 18, NASA’s InSight lander celebrated its 1,000th Martian day, or sol, by measuring one of the biggest, longest-lasting marsquakes the mission has ever detected. The temblor is estimated to be about a magnitude 4.2 and shook for nearly an hour-and-a-half.

This is the third major quake InSight has detected in a month: On Aug. 25, the mission’s seismometer detected two quakes of magnitudes 4.2 and 4.1. For comparison, a magnitude 4.2 quake has five times the energy of the mission’s previous record holder, a magnitude 3.7 quake detected in 2019.

The mission studies seismic waves to learn more about Mars’ interior. The waves change as they travel through a planet’s crust, mantle, and core, providing scientists a way to peer deep below the surface. What they learn can shed light on how all rocky worlds form, including Earth and its Moon.

The quakes might not have been detected at all had the mission not taken action earlier in the year, as Mars’ highly elliptical orbit took it farther from the Sun. Lower temperatures required the spacecraft to rely more on its heaters to keep warm; that, plus dust buildup on InSight’s solar panels, has reduced the lander’s power levels, requiring the mission to conserve energy by temporarily turning off certain instruments.

The team managed to keep the seismometer on by taking a counterintuitive approach: They used InSight’s robotic arm to trickle sand near one solar panel in the hopes that, as wind gusts carried it across the panel, the granules would sweep off some of the dust. The plan worked, and over several dust-clearing activities, the team saw power levels remain fairly steady. Now that Mars is approaching the Sun once again, power is starting to inch back up.

“If we hadn’t acted quickly earlier this year, we might have missed out on some great science,” said InSight’s principal investigator, Bruce Banerdt of NASA’s Jet Propulsion Laboratory in Southern California, which leads the mission. “Even after more than two years, Mars seems to have given us something new with these two quakes, which have unique characteristics.”

Temblor Insights

While the Sept. 18 quake is still being studied, scientists already know more about the Aug. 25 quakes: The magnitude 4.2 event occurred about 5,280 miles (8,500 kilometers) from InSight – the most distant temblor the lander has detected so far.

Scientists are working to pinpoint the source and which direction the seismic waves traveled, but they know the shaking occurred too far to have originated where InSight has detected almost all of its previous large quakes: Cerberus Fossae, a region roughly 1,000 miles (1,609 kilometers) away where lava may have flowed within the last few million years. One especially intriguing possibility is Valles Marineris, the epically long canyon system that scars the Martian equator. The approximate center of that canyon system is 6,027 miles (9,700 kilometers) from InSight.

To the surprise of scientists, the Aug. 25 quakes were two different types, as well. The magnitude 4.2 quake was dominated by slow, low-frequency vibrations, while fast, high-frequency vibrations characterized the magnitude 4.1 quake. The magnitude 4.1 quake was also much closer to the lander – only about 575 miles (925 kilometers) away.

That’s good news for seismologists: Recording different quakes from a range of distances and with different kinds of seismic waves provides more information about a planet’s inner structure. This summer, the mission’s scientists used previous marsquake data to detail the depth and thickness of the planet’s crust and mantle, plus the size of its molten core.

Despite their differences, the two August quakes do have something in common other than being big: Both occurred during the day, the windiest – and, to a seismometer, noisiest – time on Mars. InSight’s seismometer usually finds marsquakes at night, when the planet cools off and winds are low. But the signals from these quakes were large enough to rise above any noise caused by wind.

Looking ahead, the mission’s team is considering whether to perform more dust cleanings after Mars solar conjunction, when Earth and Mars are on opposite sides of the Sun. Because the Sun’s radiation can affect radio signals, interfering with communications, the team will stop issuing commands to the lander on Sept. 29, though the seismometer will continue to listen for quakes throughout conjunction.

Source: Jet Propulsion Laboratory

****

A composite image of the InSight Mars lander that was taken with its robotic arm camera on March 15 and April 11, 2021.
NASA / JPL - Caltech

Monday, September 20, 2021

A Lunar Landing Site Has Finally Been Chosen for the VIPER Rover, Which Is Scheduled to Launch in Late 2023...

An artist's concept of NASA's VIPER rover on the surface of the Moon.
NASA Ames / Daniel Rutter

NASA’s Artemis Rover to Land Near Nobile Region of Moon’s South Pole (Press Release)

In 2023, NASA’s Volatiles Investigating Polar Exploration Rover (VIPER) will land near the western edge of the Nobile Crater at the Moon’s South Pole to map and explore the region’s surface and subsurface for water and other resources. Part of Artemis, VIPER will launch on a SpaceX Falcon Heavy rocket for delivery to the Moon by Astrobotic’s Griffin lander under NASA’s Commercial Lunar Payload Services initiative.

The Moon’s South Pole is one of the coldest areas in our solar system. No prior missions to the Moon’s surface have explored it – scientists have thus far only studied the region using remote sensing instruments, including those on NASA’s Lunar Reconnaissance Orbiter and the Lunar Crater Observation and Sensing Satellite.

Data from these and other missions helped scientists conclude that ice and other potential resources exist in permanently shadowed areas of the Moon near the poles. After an extensive landing site selection process, the mountainous area west of Nobile Crater was chosen as VIPER’s landing site due to its rover-accessible terrain and array of nearby sites of scientific interest, including permanently shadowed areas.

“Once on the lunar surface, VIPER will provide ground truth measurements for the presence of water and other resources at the Moon’s South Pole, and the areas surrounding Nobile Crater showed the most promise in this scientific pursuit,” said Thomas Zurbuchen, associate administrator for science at NASA Headquarters. “The data VIPER returns will provide lunar scientists around the world with further insight into our Moon’s cosmic origin, evolution, and history, and it will also help inform future Artemis missions to the Moon and beyond by enabling us to better understand the lunar environment in these previously unexplored areas hundreds of thousands of miles away.”

Nobile Crater is an impact crater that was formed through a collision with another smaller celestial body, and is almost permanently covered in shadows, allowing ice to exist there. Smaller, more accessible craters surrounding Nobile’s perimeter, will also provide VIPER with ideal locations to investigate in its search for ice and other resources.

“Selecting a landing site for VIPER is an exciting and important decision for all of us,” Daniel Andrews, VIPER project manager, said. “Years of study have gone into evaluating the polar region VIPER will explore. VIPER is going into uncharted territory—informed by science—to test hypotheses and reveal critical information for future human space exploration.”

Landing Site Selection

NASA’s team evaluated viable rover traverse paths, taking into account where VIPER could use its solar panels to charge and stay warm during its 100-day journey. The area near Nobile Crater provided a lot of flexibility.

VIPER’s currently planned trajectory allows the rover to visit at least six sites of scientific interest, with additional time to spare.

“Our evaluation of the landing site was driven by science priorities,” said Anthony Colaprete, VIPER lead project scientist at NASA's Ames Research Center in Silicon Valley, California. “We seek answers to some pretty complex questions and studying these resources on the Moon that have stood the test of time will help us answer them.”

The VIPER team aims to address how frozen water and other resources arrived on the Moon in the first place. They also plan to identify where they came from, how they remained preserved for billions of years, how they escape, and where they go.

VIPER’s Journey Across the Nobile Region

The area VIPER will study in the Nobile region covers an approximate surface area of 36 square miles (93 square kilometers), 10 to 15 miles (16 to 24 km) of which VIPER is expected to traverse through during the course of its mission. During this time, the rover will visit carefully chosen areas of scientific interest that will provide further insight into a wide array of different kinds of lunar environments. The VIPER team will look to characterize ice and other resources in these areas using VIPER’s sensors and drill.

As VIPER moves among each area of scientific interest, it will collect samples from at least three drill locations. Analysis of these samples from a variety of depths and temperatures will help scientists to better predict where else ice may be present on the Moon based on similar terrain, allowing NASA to produce a global resource map. This map, and the other science VIPER will produce, will allow scientists to better understand the distribution of resources on the Moon and help inform future crewed missions to establish a long-term presence on the lunar surface.

Source: NASA.Gov

****

A data visualization showing the Nobile region where NASA's VIPER rover will land at the lunar South Pole in late 2023.
NASA

Saturday, September 11, 2021

20 YEARS LATER...

With the Freedom Tower standing proudly nearby, two beams of light representing the fallen World Trade Center complex shoot up into the night sky above New York City.
It was two decades ago on this day that the world was changed by immense tragedy that struck on the east coast of the United States. We will never forget the fallen...

Here's hoping that we remain vigilant, and don't allow history to repeat itself that will cause us to return our brave service members to distant lands—specifically Afghanistan—in the name of the war on terror.

May God bless America, and may God protect our troops.

ABOVE: Photo by Jesse Mills

Friday, September 10, 2021

Perseverance Update: More Info Is Revealed About the Rock the Robotic Rover Extracted Its First Core Samples From...

One of Perseverance's wheels is visible near the rock, nicknamed 'Rochette,' that the Mars rover extracted two core samples from...on September 1 and September 7, 2021, respectively.
NASA / JPL - Caltech

NASA’s Perseverance Rover Collects Puzzle Pieces of Mars’ History (Press Release)

NASA’s Perseverance Mars rover successfully collected its first pair of rock samples, and scientists already are gaining new insights into the region. After collecting its first sample, named “Montdenier,” Sept. 1, the team collected a second, “Montagnac,” from the same rock Sept. 7.

Analysis of the rocks from which the Montdenier and Montagnac samples were taken and from the rover’s previous sampling attempt may help the science team piece together the timeline of the area’s past, which was marked by volcanic activity and periods of persistent water.

“It looks like our first rocks reveal a potentially habitable sustained environment,” said Ken Farley of Caltech, project scientist for the mission, which is led by NASA’s Jet Propulsion Laboratory (JPL) in Southern California. “It’s a big deal that the water was there a long time.”

The rock that provided the mission’s first core samples is basaltic in composition and may be the product of lava flows. The presence of crystalline minerals in volcanic rocks is especially helpful in radiometric dating. The volcanic origin of the rock could help scientists accurately date when it formed. Each sample can serve as part of a larger chronological puzzle; put them in the right order, and scientists have a timeline of the most important events in the crater’s history. Some of those events include the formation of Jezero Crater, the emergence and disappearance of Jezero’s lake, and changes to the planet’s climate in the ancient past.

What’s more, salts have been spied within these rocks. These salts may have formed when groundwater flowed through and altered the original minerals in the rock, or more likely when liquid water evaporated, leaving the salts. The salt minerals in these first two rock cores may also have trapped tiny bubbles of ancient Martian water. If present, they could serve as microscopic time capsules, offering clues about the ancient climate and habitability of Mars. Salt minerals are also well-known on Earth for their ability to preserve signs of ancient life.

The Perseverance science team already knew a lake once filled the crater; for how long has been more uncertain. The scientists couldn’t dismiss the possibility that Jezero’s lake was a “flash in the pan”: floodwaters could have rapidly filled the impact crater and dried up in the space of 50 years, for example.

But the level of alteration that scientists see in the rock that provided the core samples – as well as in the rock the team targeted on their first sample-acquisition attempt – suggests that groundwater was present for a long time.

This groundwater could have been related to the lake that was once in Jezero, or it could have traveled through the rocks long after the lake had dried up. Though scientists still can’t say whether any of the water that altered these rocks was present for tens of thousands or for millions of years, they feel more certain that it was there for long enough to make the area more welcoming to microscopic life in the past.

“These samples have high value for future laboratory analysis back on Earth,” said Mitch Schulte of NASA Headquarters, the mission’s program scientist. “One day, we may be able to work out the sequence and timing of the environmental conditions that this rock’s minerals represent. This will help answer the big-picture science question of the history and stability of liquid water on Mars.”

Next Stop, ‘South Séítah’

Perseverance is currently searching the crater floor for samples that can be brought back to Earth to answer profound questions about Mars’ history. Promising samples are sealed in titanium tubes the rover carries in its chassis, where they’ll be stored until Perseverance drops them to be retrieved by a future mission. Perseverance will likely create multiple “depots” later in the mission, where it will drop off samples for a future mission to bring to Earth. Having one or more depots increases the likelihood that especially valuable samples will be accessible for retrieval to Earth.

Perseverance’s next likely sample site is just 656 feet (200 meters) away in “South Séítah,” a series of ridges covered by sand dunes, boulders, and rock shards that Farley likens to “broken dinner plates.”

The rover’s recent drill sample represents what is likely one of the youngest rock layers that can be found on Jezero Crater’s floor. South Séítah, on the other hand, is likely older, and will provide the science team a better timeline to understand events that shaped the crater floor, including its lake.

By the start of October, all Mars missions will be standing down from commanding their spacecraft for several weeks, a protective measure during a period called Mars solar conjunction. Perseverance isn’t likely to drill in South Séítah until sometime after that period.

****

Another image of Rochette taken by Perseverance after the Mars rover extracted two core samples from this volcanic rock.
NASA / JPL - Caltech

Wednesday, September 08, 2021

Hubble's Successor Is Now Scheduled to Launch Exactly One Week Before Christmas...

At the Northrop Grumman facility in Redondo Beach, California, NASA's James Webb Space Telescope is stowed in its launch configuration prior to being transported to Kourou, French Guiana to be prepped for flight aboard the European Space Agency's Ariane 5 rocket later this year.
NASA / Chris Gunn

NASA Readies James Webb Space Telescope for December Launch (Press Release)

NASA plans to launch the James Webb Space Telescope into orbit Dec. 18, 2021, to serve as the premier deep space observatory for the next decade.

The agency set the new target launch date in coordination with Arianespace after Webb recently and successfully completed its rigorous testing regimen – a major turning point for the mission. The new date also follows Arianespace successfully launching an Ariane 5 rocket in late July and scheduling a launch that will precede Webb. The July launch was the first for an Ariane 5 since August 2020.

Webb, an international program led by NASA with its partners ESA (European Space Agency) and the Canadian Space Agency, will launch on an Ariane 5 from Europe's Spaceport in French Guiana on the northeastern coast of South America. ESA is providing the Ariane 5.

The highly complex space telescope is currently resting in its final stow configuration at Northrop Grumman’s facilities in Redondo Beach, California.

“Webb is an exemplary mission that signifies the epitome of perseverance,” said Gregory L. Robinson, Webb’s program director at NASA Headquarters in Washington. “I am inspired by our dedicated team and our global partnerships that have made this incredible endeavor possible. Together, we’ve overcome technical obstacles along the way as well as challenges during the coronavirus pandemic. I also am grateful for the steadfast support of Congress. Now that we have an observatory and a rocket ready for launch, I am looking forward to the big day and the amazing science to come.”

The Webb team is preparing for shipment operations, during which the observatory will undergo final closeout procedures and packing for its journey to the launch site. The major elements of the Ariane 5 rocket that will carry Webb into space have safely arrived in Kourou, French Guiana, from Europe.

The Webb telescope’s revolutionary technology will explore every phase of cosmic history – from within our solar system to the most distant observable galaxies in the early universe, and everything in between. Webb will reveal new and unexpected discoveries, and help humankind understand the origins of the universe and our place in it.

****