Showing posts with label Dawn. Show all posts
Showing posts with label Dawn. Show all posts

Wednesday, August 20, 2025

Discoveries Are Still Being Made About Dawn's Dwarf Planet Home in the Asteroid Belt...

An enhanced-color rendering of dwarf planet Ceres...using images that were taken by NASA's now-retired Dawn spacecraft.
NASA / JPL - Caltech / UCLA / MPS / DLR / IDA

NASA: Ceres May Have Had Long-Standing Energy to Fuel Habitability (News Release)

The dwarf planet is cold now, but new research paints a picture of Ceres hosting a deep, long-lived energy source that may have maintained habitable conditions in the past.

New NASA research has found that Ceres may have had a lasting source of chemical energy: the right types of molecules needed to fuel some microbial metabolisms. Although there is no evidence that microorganisms ever existed on Ceres, the finding supports theories that this intriguing dwarf planet, which is the largest body in the main asteroid belt between Mars and Jupiter, may have once had conditions suitable to support single-celled lifeforms.

Science data from NASA’s Dawn mission, which ended in 2018, previously showed that the bright, reflective regions on Ceres’ surface are mostly made of salts left over from liquid that percolated up from underground. Later analysis in 2020 found that the source of this liquid was an enormous reservoir of brine, or salty water, below the surface. In other research, the Dawn mission also revealed evidence that Ceres has organic material in the form of carbon molecules — essential, though not sufficient on its own, to support microbial cells.

The presence of water and carbon molecules are two critical pieces of the habitability puzzle on Ceres. The new findings offer the third: a long-lasting source of chemical energy in Ceres’ ancient past that could have made it possible for microorganisms to survive. This result does not mean that Ceres had life, but rather, that there likely was “food” available should life have ever arisen on Ceres.

In the study, published in Science Advances on August 20, the authors built thermal and chemical models mimicking the temperature and composition of Ceres’ interior over time. They found that 2.5 billion years or so ago, Ceres’ subsurface ocean may have had a steady supply of hot water containing dissolved gases traveling up from metamorphosed rocks in the rocky core. The heat came from the decay of radioactive elements within the dwarf planet’s rocky interior that occurred when Ceres was young — an internal process thought to be common in our Solar System.

“On Earth, when hot water from deep underground mixes with the ocean, the result is often a buffet for microbes — a feast of chemical energy. So it could have big implications if we could determine whether Ceres’ ocean had an influx of hydrothermal fluid in the past,” said Sam Courville, lead author of the study. Now based at Arizona State University in Tempe, he led the research while working as an intern at NASA’s Jet Propulsion Laboratory in Southern California, which also managed the Dawn mission.

Catching Chill

The Ceres that we know today is unlikely to be habitable. It is cooler, with more ice and less water than in the past. There is currently insufficient heat from radioactive decay within Ceres to keep the water from freezing, and what liquid remains has become a concentrated brine.

The period when Ceres would most likely have been habitable was between a half-billion and 2 billion years after it formed (or about 2.5 billion to 4 billion years ago), when its rocky core reached its peak temperature. That’s when warm fluids would have been introduced into Ceres’ underground water.

The dwarf planet also doesn’t have the benefit of present-day internal heating generated by the push and pull of orbiting a large planet, like Saturn’s moon Enceladus and Jupiter’s moon Europa do. So Ceres’ greatest potential for habitability-fueling energy was in the past.

This result has implications for water-rich objects throughout the outer Solar System, too. Many of the other icy moons and dwarf planets that are of similar size to Ceres (about 585 miles, or 940 kilometers, in diameter) and don’t have significant internal heating from the gravitational pull of planets could have also had a period of habitability in their past.

Source: Jet Propulsion Laboratory

****

An illustration of Ceres' interior...showing the chemical processes that may be occurring beneath the dwarf planet's surface.
NASA / JPL - Caltech

Tuesday, September 27, 2022

On This Day in 2007: A Journey to Vesta and Ceres Begins from Cape Canaveral in Florida...

A Delta 2 rocket carrying NASA's Dawn spacecraft launches from Cape Canaveral Air Force Station (now Cape Canaveral Space Force Station) in Florida...on September 27, 2007.
NASA

15 Years Ago: Dawn Begins Voyage to Asteroid Vesta and Dwarf Planet Ceres (News Release)

The history-making Dawn mission, part of NASA’s Discovery Program and managed by NASA’s Jet Propulsion Laboratory (JPL) near Pasadena, California, left Earth on September 27, 2007, to study the two largest objects in the asteroid belt, asteroid Vesta and dwarf planet Ceres, providing scientists with an opportunity to learn more about the solar system’s formation.

Dawn used solar electric propulsion for most of its trajectory control, supplemented by a gravity-assist from Mars.

Dawn spent 14 months orbiting Vesta before moving on to orbit Ceres, the first spacecraft to orbit two different celestial bodies. It observed the dwarf planet until October 2018, when it ran out of attitude control fuel. The Dawn mission proved the value of ion propulsion to explore bodies in the solar system.

Managers named the ninth mission in the Discovery Program Dawn because they hoped it would reveal clues about the physical and chemical conditions in the earliest days of the solar system. Its two targets, the asteroid Vesta and the dwarf planet Ceres, the two largest objects in the main asteroid belt between the orbits of Mars and Jupiter, together comprise 45% of the mass in the asteroid belt. They have survived relatively intact from the solar system’s early days yet have remarkably different compositions, providing scientists with an opportunity to learn more about the processes of early planetary formation.

Because chemical engines would have required a prohibitively large amount of fuel to enable Dawn’s dual-target mission to the asteroid belt, the spacecraft relied on solar electric propulsion instead, using an ion propulsion system with 937 pounds of Xenon gas as a fuel source and power from its solar arrays. Between 1998 and 2001, Dawn’s predecessor the Deep Space 1 spacecraft demonstrated the utility of ion propulsion for an interplanetary mission by operating its ion engine for more than 16,000 hours, enabling it to fly by the asteroid Braille and the comet Borrelly.

Dawn lifted off on September 27, 2007, atop a Delta II rocket from Launch Complex 17B at Cape Canaveral Air Force Station, now Cape Canaveral Space Force Station, in Florida.

After insertion into heliocentric orbit, Dawn unfurled its solar arrays, the most powerful flown on an interplanetary mission. For the next 80 days, flight managers checked out Dawn’s systems including its three ion propulsion system thrusters and reaction wheel assemblies used for attitude control.

A long-duration system test of one of the ion thrusters began on November 6 and ended 165 hours later. Flight directors tested each of Dawn’s science instruments and found them in good working order.

With the initial checkout complete, Dawn turned on one of its ion thrusters on December 17, operating it until October 31, 2008, to align the spacecraft for its gravity-assist encounter with Mars.

Dawn carried three instruments to study the geology, elemental and mineral composition, shape, surface topography, geomorphology and tectonic history of Vesta and Ceres. The spacecraft’s orbital characteristics aided in determining the bodies’ masses and gravity fields.

The instruments included:

- A gamma-ray and neutron detector (GRaND).
- A visible and infrared (VIR) mapping spectrometer.
- Two identical framing cameras (FC).

After thrusting nearly continuously for 270 days, Dawn turned its ion engine off and began a coast phase toward its first planetary encounter, a gravity-assist flyby of Mars. On February 18, 2009, Dawn passed within 337 miles of the Red Planet. The close flyby not only increased Dawn’s velocity, it also changed the plane of its orbit, setting it up for its journey to Vesta.

The Mars flyby also provided an opportunity to calibrate Dawn’s instruments. The GRaND instrument collected data that scientists correlated with similar data collected by Mars Odyssey in orbit around Mars. The spacecraft entered a safe mode due to problems with its star trackers, causing some loss of science calibration data, but the event did not impact the gravity-assist flyby itself.

Dawn performed some tests of its thrusters after the flyby and resumed thrusting on June 8, 2009, continuing until arrival at Vesta. Although one of the spacecraft’s four reaction wheel assemblies failed on June 17, 2010, this did not affect operations as the three remaining ones adequately controlled its attitude.

On May 3, 2011, Dawn acquired its first targeting image of Vesta still half a million miles away. As it approached the asteroid, the spacecraft returned progressively higher resolution images. Dawn used its ion thrusters to enter orbit around Vesta on July 16, 2011, the first spacecraft to orbit any main belt object.

During its nearly 14 months at Vesta, Dawn operated in six distinct science orbits to optimize data gathering by its science instruments. The spacecraft returned more than 30,000 images of the asteroid, far more than planned and fully mapping its surface, and much additional science information. It determined that Vesta has an iron-nickel core, its size large enough to allow it to differentiate.

Dawn confirmed Vesta as the parent body of the most numerous type of meteorite found on Earth.

On September 5, 2012, Dawn departed Vesta using its ion engines to begin its two-and-a-half-year journey to its next and final destination, the dwarf planet Ceres, discovered in 1801 and the largest body in the asteroid belt.

Although a second reaction wheel assembly failed just prior to Dawn’s departure from Vesta, flight controllers devised a workaround to maintain the spacecraft’s attitude. The spacecraft’s ion thruster fired continuously – with a short interruption in September 2014 when it entered a safe mode – until it arrived in orbit around Ceres.

Because of the two failed reaction wheel assemblies, Dawn took fewer images during its approach to Ceres than it did for Vesta, but by January 26, 2015, those images exceeded the highest-resolution photographs from the Hubble Space Telescope. Dawn entered orbit around Ceres on March 6, 2015, marking the first time a single spacecraft orbited two different celestial bodies and, coming four months before New Horizons flew by dwarf planet Pluto, the first time a spacecraft observed a dwarf planet.

Dawn completed the first topographic map of Ceres during this initial polar orbit. Over the next three years, Dawn repositioned itself into nine different orbits for different phases of its science mission. Its primary mission ended in June 2016, but managers granted it a one-year extension to continue its exploration of Ceres as the dwarf planet approached its perihelion, or closest distance to the Sun.

Managers extended its mission once again in 2017, and placed it in a relatively stable orbit, ensuring that it would not impact the dwarf planet for at least 20 years and most likely 50 years.

Dawn discovered bright spots on Ceres, such as Cerealia Facula inside the Occator Crater, salty deposits composed mainly of sodium carbonate that made their way to the surface in a slushy brine from within or below the crust. This computer-generated video made from images returned by Dawn simulate a flyover of Cerealia Facula.

On October 31, 2018, Dawn finally ran out of attitude control fuel, ending its highly successful and history-making mission.

Dawn’s legacy encompasses not only the scientific knowledge gained about the solar system’s early days by exploring Vesta and Ceres, but also includes its engineering accomplishments. The spacecraft’s ion propulsion system operated for 51,385 hours (5.9 years), or for about 54% of its time in space, allowing it to enter orbit around the two largest objects in the asteroid belt.

More specifically, Dawn holds the honor as the first and so far only spacecraft to orbit an asteroid and a dwarf planet, and the first to reach a dwarf planet. The more than 100,000 images and other scientific data Dawn beamed back to Earth of its two distinct targets shed much light on the origins of the solar system.

Source: NASA.Gov

****

A natural-color image of asteroid Vesta that was taken by NASA's Dawn spacecraft on July 24, 2011.
NASA

A true-color image of dwarf planet Ceres that was taken by NASA's Dawn spacecraft in May of 2015.
NASA

An image of the Dawn microchip--which contains the names of around 365,000 people who submitted them online between late 2005 and late 2006--after it was attached to the spacecraft during launch preps in the summer of 2007.
NASA

My certificate for the Dawn mission.

Thursday, March 25, 2021

Photo of the Day: The Delta 2 Is Now Immortalized at the Rocket Garden in Florida...

A retired Delta 2 launch vehicle is now on display in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida...as of March 23, 2021.
United Launch Alliance

Just thought I'd share this image of the Delta 2 rocket that is now on display in the 'Rocket Garden' at the Kennedy Space Center Visitor Complex in Florida! This retired launch vehicle was officially unveiled to the public two days ago...and now joins space shuttle Atlantis on my list of historic vehicles that I want to see when I make another trip to NASA's Kennedy Space Center (KSC) in Florida.

I was planning to re-visit KSC this year to see the Space Launch System (SLS) stand tall at Launch Complex 39B, but 1.) The COVID-19 pandemic gave me second thoughts about flying to Florida—a Republican-run coronavirus hotspot—this year (even when I hopefully get vaccinated next month), 2.) The first launch of SLS on Artemis 1 will most likely be postponed to early 2022 after it took two attempts to conduct a successful Green Run hot fire test at Stennis Space Center in Mississippi, and 3.) I just put the finishing touches on paying off a major credit card debt using my $1,400 stimulus payment last week. (Thank you, President Biden!) But I might change my mind.

So why am I fond of the Delta 2, you ask? It was responsible for launching Mars Pathfinder, the Phoenix Mars lander, the Kepler telescope and the Dawn spacecraft to the cosmos over the past 25 years. Click on this page to know why these missions—among many, many more—mean so much to me! Happy Thursday.

Monday, September 21, 2020

Remnants from One of Our Solar System's Largest Asteroids May Have Been Found on Bennu...

Images of asteroid Bennu's surface taken by NASA's OSIRIS-REx spacecraft...showing small boulders that may have originated from asteroid Vesta.
NASA / Goddard / University of Arizona

NASA’s OSIRIS-REx to Asteroid Bennu: “You’ve got a little Vesta on you…” (News Release)

In an interplanetary faux pas, it appears some pieces of asteroid Vesta ended up on asteroid Bennu, according to observations from NASA’s OSIRIS-REx spacecraft. The new result sheds light on the intricate orbital dance of asteroids and on the violent origin of Bennu, which is a “rubble pile” asteroid that coalesced from the fragments of a massive collision.

“We found six boulders ranging in size from 5 to 14 feet (about 1.5 to 4.3 meters) scattered across Bennu’s southern hemisphere and near the equator,” said Daniella DellaGiustina of the Lunar & Planetary Laboratory, University of Arizona, Tucson. “These boulders are much brighter than the rest of Bennu and match material from Vesta.”

“Our leading hypothesis is that Bennu inherited this material from its parent asteroid after a vestoid (a fragment from Vesta) struck the parent,” said Hannah Kaplan of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Then, when the parent asteroid was catastrophically disrupted, a portion of its debris accumulated under its own gravity into Bennu, including some of the pyroxene from Vesta.”

DellaGiustina and Kaplan are primary authors of a paper on this research appearing in Nature Astronomy September 21.

The unusual boulders on Bennu first caught the team’s eye in images from the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Camera Suite (OCAMS). They appeared extremely bright, with some almost ten times brighter than their surroundings. They analyzed the light from the boulders using the OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) instrument to get clues to their composition. A spectrometer separates light into its component colors. Since elements and compounds have distinct, signature patterns of bright and dark across a range of colors, they can be identified using a spectrometer. The signature from the boulders was characteristic of the mineral pyroxene, similar to what is seen on Vesta and the vestoids, smaller asteroids that are fragments blasted from Vesta when it sustained significant asteroid impacts.

Of course it’s possible that the boulders actually formed on Bennu’s parent asteroid, but the team thinks this is unlikely based on how pyroxene typically forms. The mineral typically forms when rocky material melts at high-temperature. However, most of Bennu is composed of rocks containing water-bearing minerals, so it (and its parent) couldn’t have experienced very high temperatures. Next, the team considered localized heating, perhaps from an impact. An impact needed to melt enough material to create large pyroxene boulders would be so significant that it would have destroyed Bennu’s parent-body. So, the team ruled out these scenarios, and instead considered other pyroxene-rich asteroids that might have implanted this material to Bennu or its parent.

Observations reveal it’s not unusual for an asteroid to have material from another asteroid splashed across its surface. Examples include dark material on crater walls seen by the Dawn spacecraft at Vesta, a black boulder seen by the Hayabusa spacecraft on Itokawa, and very recently, material from S-type asteroids observed by Hayabusa2 at Ryugu. This indicates many asteroids are participating in a complex orbital dance that sometimes results in cosmic mashups.

As asteroids move through the solar system, their orbits can be altered in many ways, including the pull of gravity from planets and other objects, meteoroid impacts, and even the slight pressure from sunlight. The new result helps pin down the complex journey Bennu and other asteroids have traced through the solar system.

Based on its orbit, several studies indicate Bennu was delivered from the inner region of the Main Asteroid Belt via a well-known gravitational pathway that can take objects from the inner Main Belt to near-Earth orbits. There are two inner Main Belt asteroid families (Polana and Eulalia) that look like Bennu: dark and rich in carbon, making them likely candidates for Bennu’s parent. Likewise, the formation of the vestoids is tied to the formation of the Veneneia and Rheasilvia impact basins on Vesta, at roughly about two billion years ago and approximately one billion years ago, respectively.

“Future studies of asteroid families, as well as the origin of Bennu, must reconcile the presence of Vesta-like material as well as the apparent lack of other asteroid types. We look forward to the returned sample, which hopefully contains pieces of these intriguing rock types,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona in Tucson. “This constraint is even more compelling given the finding of S-type material on asteroid Ryugu. This difference shows the value in studying multiple asteroids across the solar system.”

The spacecraft is going to make its first attempt to sample Bennu in October and return it to Earth in 2023 for detailed analysis. The mission team closely examined four potential sample sites on Bennu to determine their safety and science value before making a final selection in December 2019. DellaGiustina and Kaplan’s team thinks they might find smaller pieces of Vesta in images from these close-up studies.

The research was funded by the NASA New Frontiers Program. The primary authors acknowledge significant collaboration with the French space agency CNES on this paper. NASA’s Goddard Space Flight Center in Greenbelt, Maryland provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. The late Michael Drake of the University of Arizona pioneered the study of vestoid meteorites and was the first principal investigator for OSIRIS-REx. Lockheed Martin Space in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. NASA is exploring our Solar System and beyond, uncovering worlds, stars, and cosmic mysteries near and far with our powerful fleet of space and ground-based missions.

Source: AsteroidMission.org

Monday, August 10, 2020

Dawn Update: New Data Shows That Dwarf Planet Ceres May Be Considered An Ocean World...

A false-color image of Occator Crater on Ceres...showing recently-exposed brine that covers this part of the dwarf planet's surface.
NASA / JPL - Caltech / UCLA / MPS / DLR / IDA

Mystery Solved: Bright Areas on Ceres Come From Salty Water Below (News Release)

Data from NASA's recent Dawn mission answers two long-unresolved questions: Is there liquid inside Ceres, and how long ago was the dwarf planet geologically active?

NASA's Dawn spacecraft gave scientists extraordinary close-up views of the dwarf planet Ceres, which lies in the main asteroid belt between Mars and Jupiter. By the time the mission ended in October 2018, the orbiter had dipped to less than 22 miles (35 kilometers) above the surface, revealing crisp details of the mysterious bright regions Ceres had become known for.

Scientists had figured out that the bright areas were deposits made mostly of sodium carbonate - a compound of sodium, carbon, and oxygen. They likely came from liquid that percolated up to the surface and evaporated, leaving behind a highly reflective salt crust. But what they hadn't yet determined was where that liquid came from.

By analyzing data collected near the end of the mission, Dawn scientists have concluded that the liquid came from a deep reservoir of brine, or salt-enriched water. By studying Ceres' gravity, scientists learned more about the dwarf planet's internal structure and were able to determine that the brine reservoir is about 25 miles (40 kilometers) deep and hundreds of miles wide.

Ceres doesn't benefit from internal heating generated by gravitational interactions with a large planet, as is the case for some of the icy moons of the outer solar system. But the new research, which focuses on Ceres' 57-mile-wide (92-kilometer-wide) Occator Crater - home to the most extensive bright areas - confirms that Ceres is a water-rich world like these other icy bodies.

The findings, which also reveal the extent of geologic activity in Occator Crater, appear in a special collection of papers published by Nature Astronomy, Nature Geoscience, and Nature Communications on Aug. 10.

"Dawn accomplished far more than we hoped when it embarked on its extraordinary extraterrestrial expedition," said Mission Director Marc Rayman of NASA's Jet Propulsion Laboratory in Southern California. "These exciting new discoveries from the end of its long and productive mission are a wonderful tribute to this remarkable interplanetary explorer."

Solving the Bright Mystery

Long before Dawn arrived at Ceres in 2015, scientists had noticed diffuse bright regions with telescopes, but their nature was unknown. From its close orbit, Dawn captured images of two distinct, highly reflective areas within Occator Crater, which were subsequently named Cerealia Facula and Vinalia Faculae. ("Faculae" means bright areas.)

Scientists knew that micrometeorites frequently pelt the surface of Ceres, roughing it up and leaving debris. Over time, that sort of action should darken these bright areas. So their brightness indicates that they likely are young. Trying to understand the source of the areas, and how the material could be so new, was a main focus of Dawn's final extended mission, from 2017 to 2018.

The research not only confirmed that the bright regions are young - some less than 2 million years old; it also found that the geologic activity driving these deposits could be ongoing. This conclusion depended on scientists making a key discovery: salt compounds (sodium chloride chemically bound with water and ammonium chloride) concentrated in Cerealia Facula.

On Ceres' surface, salts bearing water quickly dehydrate, within hundreds of years. But Dawn's measurements show they still have water, so the fluids must have reached the surface very recently. This is evidence both for the presence of liquid below the region of Occator Crater and ongoing transfer of material from the deep interior to the surface.

The scientists found two main pathways that allow liquids to reach the surface. "For the large deposit at Cerealia Facula, the bulk of the salts were supplied from a slushy area just beneath the surface that was melted by the heat of the impact that formed the crater about 20 million years ago," said Dawn Principal Investigator Carol Raymond. "The impact heat subsided after a few million years; however, the impact also created large fractures that could reach the deep, long-lived reservoir, allowing brine to continue percolating to the surface."

Active Geology: Recent and Unusual

In our solar system, icy geologic activity happens mainly on icy moons, where it is driven by their gravitational interactions with their planets. But that's not the case with the movement of brines to the surface of Ceres, suggesting that other large ice-rich bodies that are not moons could also be active.

Some evidence of recent liquids in Occator Crater comes from the bright deposits, but other clues come from an assortment of interesting conical hills reminiscent of Earth's pingos - small ice mountains in polar regions formed by frozen pressurized groundwater. Such features have been spotted on Mars, but the discovery of them on Ceres marks the first time they've been observed on a dwarf planet.

On a larger scale, scientists were able to map the density of Ceres' crust structure as a function of depth - a first for an ice-rich planetary body. Using gravity measurements, they found Ceres' crustal density increases significantly with depth, way beyond the simple effect of pressure. Researchers inferred that at the same time Ceres' reservoir is freezing, salt and mud are incorporating into the lower part of the crust.

Dawn is the only spacecraft ever to orbit two extraterrestrial destinations - Ceres and the giant asteroid Vesta - thanks to its efficient ion propulsion system. When Dawn used the last of a key fuel, hydrazine, for a system that controls its orientation, it was neither able to point to Earth for communications nor to point its solar arrays at the Sun to produce electrical power. Because Ceres was found to have organic materials on its surface and liquid below the surface, planetary protection rules required Dawn to be placed in a long-duration orbit that will prevent it from impacting the dwarf planet for decades.

JPL, a division of Caltech in Pasadena, California, manages Dawn's mission for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. JPL is responsible for overall Dawn mission science. Northrop Grumman in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team.

Source: Jet Propulsion Laboratory

Thursday, November 01, 2018

The Sun Has Set on Dawn's Mission...

Enhanced color images of asteroid Vesta and dwarf planet Ceres...which were explored by NASA's Dawn spacecraft in 2011 and 2015, respectively.
NASA / JPL - Caltech

NASA’s Dawn Mission to Asteroid Belt Comes to End (Press Release)

NASA’s Dawn spacecraft has gone silent, ending a historic mission that studied time capsules from the solar system’s earliest chapter.

Dawn missed scheduled communications sessions with NASA's Deep Space Network on Wednesday, Oct. 31, and Thursday, Nov. 1. After the flight team eliminated other possible causes for the missed communications, mission managers concluded that the spacecraft finally ran out of hydrazine, the fuel that enables the spacecraft to control its pointing. Dawn can no longer keep its antennae trained on Earth to communicate with mission control or turn its solar panels to the Sun to recharge.

The Dawn spacecraft launched 11 years ago to visit the two largest objects in the main asteroid belt. Currently, it’s in orbit around the dwarf planet Ceres, where it will remain for decades.

“Today, we celebrate the end of our Dawn mission – its incredible technical achievements, the vital science it gave us, and the entire team who enabled the spacecraft to make these discoveries,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington. “The astounding images and data that Dawn collected from Vesta and Ceres are critical to understanding the history and evolution of our solar system.”

Dawn launched in 2007 on a journey that put about 4.3 billion miles (6.9 billion kilometers) on its odometer. Propelled by ion engines, the spacecraft achieved many firsts along the way. In 2011, when Dawn arrived at Vesta, the second largest world in the main asteroid belt, the spacecraft became the first to orbit a body in the region between Mars and Jupiter. In 2015, when Dawn went into orbit around Ceres, a dwarf planet that is also the largest world in the asteroid belt, the mission became the first to visit a dwarf planet and go into orbit around two destinations beyond Earth.

"The fact that my car's license plate frame proclaims, 'My other vehicle is in the main asteroid belt,' shows how much pride I take in Dawn," said Mission Director and Chief Engineer Marc Rayman at NASA's Jet Propulsion Laboratory (JPL). "The demands we put on Dawn were tremendous, but it met the challenge every time. It's hard to say goodbye to this amazing spaceship, but it’s time."

The data Dawn beamed back to Earth from its four science experiments enabled scientists to compare two planet-like worlds that evolved very differently. Among its accomplishments, Dawn showed how important location was to the way objects in the early solar system formed and evolved. Dawn also reinforced the idea that dwarf planets could have hosted oceans over a significant part of their history – and potentially still do.

“In many ways, Dawn’s legacy i­s just beginning,” said Princ­­ipal Investigator Carol Raymond at JPL. “Dawn’s data sets will be deeply mined by scientists working on how planets grow and differentiate, and when and where life could have formed in our solar system. Ceres and Vesta are important to the study of distant planetary systems, too, as they provide a glimpse of the conditions that may exist around young stars.”

Because Ceres has conditions of interest to scientists who study chemistry that leads to the development of life, NASA follows strict planetary protection protocols for the disposal of the Dawn spacecraft. Dawn will remain in orbit for at least 20 years, and engineers have more than 99 percent confidence the orbit will last for at least 50 years.

So, while the mission plan doesn't provide the closure of a final, fiery plunge – the way NASA’s Cassini spacecraft ended last year, for example – at least this is certain: Dawn spent every last drop of hydrazine making science observations of Ceres and radioing them back so we could learn more about the solar system we call home.

The Dawn mission is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. JPL is responsible for overall Dawn mission science. Northrop Grumman in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team.

****

A Delta II rocket carrying the Dawn spacecraft is launched from Cape Canaveral Air Force Station in Florida...on September 27, 2007.
Tony Gray and Robert Murray for NASA / Carleton Bailie for United Launch Alliance

IMAGE 1: A photo taken by me of a microchip on display during the 2007 Open House at NASA's Jet Propulsion Laboratory near Pasadena, California.  IMAGE 2: A technician installs the Dawn microchip onto the spacecraft.  IMAGE 3: The Dawn microchip now secured on the spacecraft.

A certificate commemorating my participation in the 'Send Your Name to the Asteroid Belt' project.

Saturday, September 15, 2018

The Delta II Launch Vehicle Has Entered The History Books, And Will Soon Enter Kennedy Space Center's 'Rocket Garden' As Well...

Embarking on its final launch before retirement, a Delta II rocket (carrying NASA's ICESat-2 spacecraft) lifts off from Vandenberg Air Force Base in California...on September 15, 2018.
NASA

United Launch Alliance Selects NASA’s Kennedy Space Center Visitor Complex as the Future Home of the Last Delta II Rocket (Press Release)

Centennial, Colo., Sept. 15, 2018 – United Launch Alliance (ULA) announced today that the last Delta II rocket will join a lineup of historic rockets in the Rocket Garden on display at NASA’s Kennedy Space Center Visitor Complex in Cape Canaveral, Florida.

“The Delta II rocket has been a venerable workhorse for NASA and civilian scientists, the U.S. military, and commercial clients throughout its almost 30 years of service,” said Tory Bruno, ULA president and CEO. “This program comes to a close with the final launch of NASA’s ICESat-2, but its legacy will continue and the Visitor Complex will help us keep the story of the success of this much-revered rocket in the hearts and minds of the public.”

The maiden Delta II took flight on Valentine's Day in 1989, successfully delivering the first operational GPS satellite into space. Since that first launch, Delta II rockets have launched 154 successful missions. Its resume includes several trips to Mars as well as the planet-hunting Kepler, the twin lunar-orbiting GRAIL spacecraft, 48 GPS satellites and numerous commercial imaging and communications satellites.

With more than a century of combined heritage, United Launch Alliance is the nation's most experienced and reliable launch service provider. ULA has successfully delivered more than 125 satellites to orbit that provide critical capabilities for troops in the field, aid meteorologists in tracking severe weather, enable personal device-based GPS navigation and unlock the mysteries of our solar system.

Source: United Launch Alliance

****

Posing in the 'Rocket Garden' at the Kennedy Space Center Visitor Complex in Florida...on February 8, 2009.

Friday, September 14, 2018

Photos of the Day: Commemorating the Final Launch of the Delta II Rocket...

A Delta II rocket carrying NASA's comet-bound Deep Impact spacecraft launches from Cape Canaveral Air Force Station (CCAFS) in Florida...on January 12, 2005.
NASA

At 5:46 AM, Pacific Daylight Time tomorrow, a Delta II rocket is set to launch from Vandenberg Air Force Base in California...carrying NASA's ICESat-2 spacecraft to a polar orbit around the Earth. What makes this flight special, and sad, is that this is the final flight of the Delta II vehicle before it is retired for good. I was pondering for the last two months about whether or not I should make the drive to Ventura County (where Vandenberg is located) to watch the Delta II soar into the sky one last time. Ultimately, and unfortunately, I decided not to go since I've been strapped financially for much of 2018 and can't afford to spend cash on gas, hotel room and other expenses if I made the trip to Central California. Considering the fact that the weather is currently 100% 'GO' for liftoff on Saturday morning, it seems like the rocket gods are trying to make me regret my decision. Here's hoping that some type of minor mechanical issue will crop up that'll delay the Delta II's launch a few days—just to ease my guilt of not going!

To honor the venerable Delta II, here are photos of the four vehicles that launched NASA spacecraft which had my name as well as those of thousands of others on them:

- TOP PHOTO: A Delta II rocket carrying the comet-bound Deep Impact spacecraft (whose now-obliterated impactor held a CD containing the names of 625,000 people, including mine) launched from Cape Canaveral Air Force Station (CCAFS) in Florida on January 12, 2005.

- PHOTO DIRECTLY BELOW: A Delta II rocket carrying the Mars-bound Phoenix lander (whose DVD holds the names of 250,000 people, including mine) launched from CCAFS on August 4, 2007.

- SECOND PHOTO FROM THE BOTTOM: A Delta II rocket carrying the asteroid and dwarf planet-bound Dawn space probe (whose microchip is imprinted with the names of 365,000 people, including mine) lifted off from CCAFS on September 27, 2007.

And last, but definitely not least...

- THE PHOTO AT THE VERY BOTTOM OF THIS ENTRY: A Delta II vehicle carrying the exoplanet-hunting Kepler space telescope (whose DVD is encoded with the names and messages of 60,000 people, including mine) departed from CCAFS on March 6, 2009.

All I can say is, when the day comes that the Atlas V rocket (which sent the Curiosity Mars rover, the Lunar Reconnaissance Orbiter, the MAVEN spacecraft and InSight Mars lander—which all have my name on them as well—to their deep-space destinations over the past decade) is about to be retired, I'll definitely make the effort to see its final launch in person. Assuming, of course, that its last flight also takes place from Ventura County. Whether or not its final payload is an interplanetary NASA spacecraft or a classified military satellite won't matter. I just want to see one of these marvels of human engineering leave Earth's atmosphere in person before it's grounded permanently. Have a great weekend!

A Delta II rocket carrying NASA's Phoenix Mars lander launches from CCAFS in Florida...on August 4, 2007.
NASA

A Delta II rocket carrying NASA's asteroid and dwarf planet-bound Dawn spacecraft launches from CCAFS in Florida...on September 27, 2007.
NASA

A Delta II rocket carrying NASA's exoplanet-hunting Kepler space telescope launches from CCAFS in Florida...on March 6, 2009.
NASA

Tuesday, July 03, 2018

NASA's Dawn Mission Enters the Endgame...

An animated GIF depicting NASA's Dawn spacecraft moving through deep space on the thrust of its ion engine.
NASA / JPL - Caltech

Dawn's Engines Complete Firing, Science Continues (News Release - June 28)

Mission controllers have turned off the industrious ion engines on NASA's Dawn spacecraft for the last time and do not expect to turn them back on again, if everything goes as planned for the rest of Dawn's mission in orbit around Ceres, the largest body in the main asteroid belt. Engineers led by Dawn Project Manager Marc Rayman of NASA's Jet Propulsion Laboratory, Pasadena, California, drew this conclusion on Tuesday, June 26, after analyzing data from Dawn's last thrusting session on Thursday, June 21, and verifying plans for the rest of the mission. Mission managers expect Dawn to continue gathering science data and transmitting it to Earth for another few months.

Dawn turned on its innovative ion engines for the first time on Oct. 6, 2007. That technology has allowed Dawn to become the first mission to orbit two solar system destinations outside of the Earth-Moon system -- first Vesta and then Ceres - and to do groundbreaking science at these two bodies. During more than a decade in space, Dawn's ion engines have set records for total firing time of 5.87 years and total effective velocity change by a spacecraft of 25,700 mph (41,360 kph). Because of the nature of orbital motion, that is not Dawn's actual velocity. Spacecraft slow down relative to the Sun as they go outward in the solar system, Rayman explained. Read more about orbital velocity here.

"Dawn's remarkable ion engines have taken us on an exciting extraterrestrial expedition that would have been impossible without them," said Rayman. "The engines are healthy and ready in case we ever need them again, but they have taken Dawn exactly where we want it to be. We will remember the engines and their cool blue glow with fondness and gratitude."

Dawn launched on Sept. 27, 2007.

Source: Jet Propulsion Laboratory

****

A close-up image of Ceres' surface that was taken by NASA's Dawn spacecraft from an altitude of 21 miles (34 kilometers)...on June 22, 2018.
NASA / JPL - Caltech / UCLA / MPS / DLR / IDA

Tuesday, December 12, 2017

Dawn Update: New Spots on a Dwarf Planet's Surface...

A simulated view of Ceres' Occator Crater...with bright spots indicating salt-rich material in the crater's basin.
NASA / JPL - Caltech / UCLA / MPS / DLR / IDA / PSI

Bright Areas on Ceres Suggest Geologic Activity (Press Release)

If you could fly aboard NASA's Dawn spacecraft, the surface of dwarf planet Ceres would generally look quite dark, but with notable exceptions. These exceptions are the hundreds of bright areas that stand out in images Dawn has returned. Now, scientists have a better sense of how these reflective areas formed and changed over time -- processes indicative of an active, evolving world.

"The mysterious bright spots on Ceres, which have captivated both the Dawn science team and the public, reveal evidence of Ceres' past subsurface ocean, and indicate that, far from being a dead world, Ceres is surprisingly active. Geological processes created these bright areas and may still be changing the face of Ceres today," said Carol Raymond, deputy principal investigator of the Dawn mission, based at NASA's Jet Propulsion Laboratory in Pasadena, California. Raymond and colleagues presented the latest results about the bright areas at the American Geophysical Union meeting in New Orleans on Tuesday, Dec. 12.

Different Kinds of Bright Areas

Since Dawn arrived in orbit at Ceres in March 2015, scientists have located more than 300 bright areas on Ceres. A new study in the journal Icarus, led by Nathan Stein, a doctoral researcher at Caltech in Pasadena, California, divides Ceres' features into four categories.

The first group of bright spots contains the most reflective material on Ceres, which is found on crater floors. The most iconic examples are in Occator Crater, which hosts two prominent bright areas. Cerealia Facula, in the center of the crater, consists of bright material covering a 6-mile-wide (10-kilometer-wide) pit, within which sits a small dome. East of the center is a collection of slightly less reflective and more diffuse features called Vinalia Faculae. All the bright material in Occator Crater is made of salt-rich material, which was likely once mixed in water. Although Cerealia Facula is the brightest area on all of Ceres, it would resemble dirty snow to the human eye.

More commonly, in the second category, bright material is found on the rims of craters, streaking down toward the floors. Impacting bodies likely exposed bright material that was already in the subsurface or had formed in a previous impact event.

Separately, in the third category, bright material can be found in the material ejected when craters were formed.

The mountain Ahuna Mons gets its own fourth category -- the one instance on Ceres where bright material is unaffiliated with any impact crater. This likely cryovolcano, a volcano formed by the gradual accumulation of thick, slowly flowing icy materials, has prominent bright streaks on its flanks.

Over hundreds of millions of years, bright material has mixed with the dark material that forms the bulk of Ceres' surface, as well as debris ejected during impacts. That means billions of years ago, when Ceres experienced more impacts, the dwarf planet's surface likely would have been peppered with thousands of bright areas.

"Previous research has shown that the bright material is made of salts, and we think subsurface fluid activity transported it to the surface to form some of the bright spots," Stein said.

The Case of Occator

Why do the different bright areas of Occator seem so distinct from one another? Lynnae Quick, a planetary geologist at the Smithsonian Institution in Washington, has been delving into this question.

The leading explanation for what happened at Occator is that it could have had, at least in the recent past, a reservoir of salty water beneath it. Vinalia Faculae, the diffuse bright regions to the northeast of the crater's central dome, could have formed from a fluid driven to the surface by a small amount of gas, similar to champagne surging out of its bottle when the cork is removed.

In the case of the Vinalia Faculae, the dissolved gas could have been a volatile substance such as water vapor, carbon dioxide, methane or ammonia. Volatile-rich salty water could have been brought close to Ceres' surface through fractures that connected to the briny reservoir beneath Occator. The lower pressure at Ceres' surface would have caused the fluid to boil off as a vapor. Where fractures reached the surface, this vapor could escape energetically, carrying with it ice and salt particles and depositing them on the surface.

Cerealia Facula must have formed in a somewhat different process, given that it is more elevated and brighter than Vinalia Faculae. The material at Cerealia may have been more like an icy lava, seeping up through the fractures and swelling into a dome. Intermittent phases of boiling, similar to what happened when Vinalia Faculae formed, may have occurred during this process, littering the surface with ice and salt particles that formed the Cerealia bright spot.

Quick's analyses do not depend on the initial impact that formed Occator. However, the current thinking among Dawn scientists is that when a large body slammed into Ceres, excavating the 57-mile-wide (92-kilometer-wide) crater, the impact may have also created fractures through which liquid later emerged.

"We also see fractures on other solar system bodies, such as Jupiter's icy moon Europa," Quick said. "The fractures on Europa are more widespread than the fractures we see at Occator. However, processes related to liquid reservoirs that might exist beneath Europa's cracks today could be used as a comparison for what may have happened at Occator in the past."

As Dawn continues the final phase of its mission, in which it will descend to lower altitudes than ever before, scientists will continue learning about the origins of the bright material on Ceres and what gave rise to the enigmatic features in Occator.

The Dawn mission is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team.

Source: Jet Propulsion Laboratory

****

Friday, December 01, 2017

Voyager 1 Update: A Significant Development for the Interstellar Spacecraft...

An artist's concept of a Voyager spacecraft venturing through the cosmos.
NASA / JPL - Caltech

Voyager 1 Fires Up Thrusters After 37 Years (News Release)

If you tried to start a car that's been sitting in a garage for decades, you might not expect the engine to respond. But a set of thrusters aboard the Voyager 1 spacecraft successfully fired up Wednesday after 37 years without use.

Voyager 1, NASA's farthest and fastest spacecraft, is the only human-made object in interstellar space, the environment between the stars. The spacecraft, which has been flying for 40 years, relies on small devices called thrusters to orient itself so it can communicate with Earth. These thrusters fire in tiny pulses, or "puffs," lasting mere milliseconds, to subtly rotate the spacecraft so that its antenna points at our planet. Now, the Voyager team is able to use a set of four backup thrusters, dormant since 1980.

"With these thrusters that are still functional after 37 years without use, we will be able to extend the life of the Voyager 1 spacecraft by two to three years," said Suzanne Dodd, project manager for Voyager at NASA's Jet Propulsion Laboratory, Pasadena, California.

Since 2014, engineers have noticed that the thrusters Voyager 1 has been using to orient the spacecraft, called "attitude control thrusters," have been degrading. Over time, the thrusters require more puffs to give off the same amount of energy. At 13 billion miles from Earth, there's no mechanic shop nearby to get a tune-up.

The Voyager team assembled a group of propulsion experts at NASA's Jet Propulsion Laboratory, Pasadena, California, to study the problem. Chris Jones, Robert Shotwell, Carl Guernsey and Todd Barber analyzed options and predicted how the spacecraft would respond in different scenarios. They agreed on an unusual solution: Try giving the job of orientation to a set of thrusters that had been asleep for 37 years.

“The Voyager flight team dug up decades-old data and examined the software that was coded in an outdated assembler language, to make sure we could safely test the thrusters," said Jones, chief engineer at JPL.

In the early days of the mission, Voyager 1 flew by Jupiter, Saturn, and important moons of each. To accurately fly by and point the spacecraft's instruments at a smorgasbord of targets, engineers used "trajectory correction maneuver,” or TCM, thrusters that are identical in size and functionality to the attitude control thrusters, and are located on the back side of the spacecraft. But because Voyager 1's last planetary encounter was Saturn, the Voyager team hadn't needed to use the TCM thrusters since November 8, 1980. Back then, the TCM thrusters were used in a more continuous firing mode; they had never been used in the brief bursts necessary to orient the spacecraft.

All of Voyager's thrusters were developed by Aerojet Rocketdyne. The same kind of thruster, called the MR-103, flew on other NASA spacecraft as well, such as Cassini and Dawn.

On Tuesday, Nov. 28, 2017, Voyager engineers fired up the four TCM thrusters for the first time in 37 years and tested their ability to orient the spacecraft using 10-millisecond pulses. The team waited eagerly as the test results traveled through space, taking 19 hours and 35 minutes to reach an antenna in Goldstone, California, that is part of NASA's Deep Space Network.

Lo and behold, on Wednesday, Nov. 29, they learned the TCM thrusters worked perfectly -- and just as well as the attitude control thrusters.

“The Voyager team got more excited each time with each milestone in the thruster test. The mood was one of relief, joy and incredulity after witnessing these well-rested thrusters pick up the baton as if no time had passed at all," said Barber, a JPL propulsion engineer.

The plan going forward is to switch to the TCM thrusters in January. To make the change, Voyager has to turn on one heater per thruster, which requires power -- a limited resource for the aging mission. When there is no longer enough power to operate the heaters, the team will switch back to the attitude control thrusters.

The thruster test went so well, the team will likely do a similar test on the TCM thrusters for Voyager 2, the twin spacecraft of Voyager 1. The attitude control thrusters currently used for Voyager 2 are not yet as degraded as Voyager 1's, however.

Voyager 2 is also on course to enter interstellar space, likely within the next few years.

The Voyager spacecraft were built by JPL, which continues to operate both. JPL is a division of Caltech in Pasadena. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate in Washington.

Source: NASA.Gov

Wednesday, September 27, 2017

Dawn Update: Marking One Decade Since Its Launch to the Asteroid Belt...

The Dawn spacecraft is launched from Cape Canaveral Air Force Station in Florida on September 27, 2007.
Tony Gray and Robert Murray for NASA / Carleton Bailie for United Launch Alliance

Dawn Mission Celebrates 10 Years in Space (Press Release)

Ten years ago, NASA's Dawn spacecraft set sail for the two most massive bodies in the asteroid belt between Mars and Jupiter: giant asteroid Vesta and dwarf planet Ceres. The mission was designed to deliver new knowledge about these small but intricate worlds, which hold clues to the formation of planets in our solar system.

"Our interplanetary spaceship has exceeded all expectations in the last decade, delivering amazing insights about these two fascinating bodies," said Chris Russell, principal investigator of the Dawn mission, based at the University of California, Los Angeles.

Since its launch on Sept. 27, 2007, Dawn has achieved numerous technical and scientific feats while traveling 4 billion miles (6 billion kilometers). It is the only spacecraft to orbit two extraterrestrial solar system targets. It is also the only spacecraft to orbit a dwarf planet, a milestone it achieved when in entered orbit around Ceres on March 6, 2015. The spacecraft's ion propulsion system enabled Dawn to study each of these worlds from a variety of vantage points and altitudes, creating an impressive scrapbook of 88,000 photos. Additionally, Dawn's suite of instruments enabled it to take a variety of other measurements of Vesta and Ceres, revealing the contrasting compositions and internal structures of these two bodies.

An image of asteroid Vesta that was taken by the Dawn spacecraft on July 24, 2011.
NASA / JPL - Caltech / UCLA / MPS / DLR / IDA

Vesta Highlights

Scientists learned a great deal about Vesta's geological features and composition during Dawn's 14 months of exploration there. A notable discovery was that Rheasilvia, a giant basin in Vesta's southern hemisphere, was even deeper and wider than scientists expected based on telescopic observations from Earth. It spans more than 310 miles (500 kilometers) and pierces about 12 miles (19 kilometers) into Vesta. The center of the crater also hosts a mountain twice the height of Mt. Everest -- the tallest feature seen in Dawn's 1,298 orbits of Vesta.

The massive punch into Vesta that carved out this crater happened about 1 billion years ago and caused huge amounts of material to rain down on the surface. The net result is that the surface of the southern hemisphere of Vesta is younger than the northern hemisphere, which retains a hefty record of craters. The Rheasilvia impact also created dozens of gorges circling Vesta's equator. Canyons there, some of which formed from an earlier impact, measure up to 290 miles (465 kilometers) in length.

Using data from the Dawn spacecraft's first science orbit in 2015, this image of Ceres approximates how the dwarf planet's colors would appear to the human eye.
NASA / JPL - Caltech / UCLA / MPS / DLR / IDA

Ceres Highlights

One of Dawn's biggest revelations at Ceres is the extremely bright, salty material in Occator Crater that gleams amid an otherwise dark area. What appeared to be a single white blob at a distance turned out to be a smattering of many bright areas called faculae. The central bright area, Cerealia Facula, has a dome at its center with radial fractures across it that appears reddish in enhanced color images. This "bright spot" suggests Ceres was geologically active in the very recent past, when briny water rose to the surface and deposited salts. Just to the east are the Vinalia Faculae, a constellation of less-bright spots distributed along fractures that also intrigue scientists. Ceres hosts more than 300 small bright areas, with some thought to host ice at northern latitudes.

Another huge surprise at Ceres was Ahuna Mons, which scientists believe formed as a cryovolcano, a volcano that erupted with salty water in the past. This "lonely mountain," 3 miles (5 kilometers) high on its steepest side, is unlike anything else on Ceres and remains a thriving research topic. Though both Ahuna Mons and Occator appear dormant, they suggest that liquid water flowed once beneath the surface of Ceres, and may even still be there today, if it is enriched in salts that would lower its freezing point.

A certificate commemorating my participation in the 'Send Your Name to the Asteroid Belt' project.

Dawn Science Continues

"The science team is still actively exploring the troves of data that Dawn has delivered so far, comparing these two fossils of the early solar system," said Carol Raymond, Dawn deputy principal investigator, based at NASA's Jet Propulsion Laboratory, Pasadena, California.

Since March 2015, Dawn has orbited Ceres 1,595 times. It remains healthy, currently in a 30-day elliptical orbit collecting data on cosmic rays in the vicinity of Ceres.

"This continues to be a mission for everyone who yearns for new knowledge, everyone who is curious about the cosmos, and everyone who is exhilarated by bold adventures into the unknown," said Marc Rayman, mission director and chief engineer, based at JPL.

Dawn's mission is managed by the Jet Propulsion Laboratory for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK, Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute are international partners on the mission team.

Source: Jet Propulsion Laboratory

****

IMAGE 1: A photo taken by me of a microchip on display during the 2007 Open House at NASA's Jet Propulsion Laboratory near Pasadena, California.  IMAGE 2: A technician installs the Dawn microchip onto the spacecraft.  IMAGE 3: The Dawn microchip now secured on the spacecraft.

Thursday, April 06, 2017

Dawn Update: The Dwarf Planet It Orbits Has an Atmosphere...Sort of

Images of asteroid Vesta and dwarf planet Ceres...with hydrogen data (shaded in red) taken by NASA's Dawn spacecraft overlaid on both celestial bodies.
NASA / JPL - Caltech / UCLA / MPS / DLR / IDA / PSI

Ceres' Temporary Atmosphere Linked to Solar Activity (Press Release)

Scientists have long thought that Ceres may have a very weak, transient atmosphere, but mysteries lingered about its origin and why it's not always present. Now, researchers suggest that this temporary atmosphere appears to be related to the behavior of the Sun, rather than Ceres' proximity to the Sun. The study was conducted by scientists from NASA's Dawn mission and others who previously identified water vapor at Ceres using other observatories.

"We think the occurrence of Ceres' transient atmosphere is the product of solar activity," said Michaela Villarreal, lead author of the new study in the Astrophysical Journal Letters and researcher at the University of California, Los Angeles.

Ceres is the largest object in the asteroid belt that lies between Mars and Jupiter. When energetic particles from the Sun hit exposed ice and ice near the surface of the dwarf planet, it transfers energy to the water molecules as they collide. This frees the water molecules from the ground, allowing them to escape and create a tenuous atmosphere that may last for a week or so.

"Our results also have implications for other airless, water-rich bodies of the solar system, including the polar regions of the Moon and some asteroids," said Chris Russell, principal investigator of the Dawn mission, also at UCLA. "Atmospheric releases might be expected from their surfaces, too, when solar activity erupts." Before Dawn arrived in orbit at Ceres in 2015, evidence for an atmosphere had been detected by some observatories at certain times, but not others, suggesting that it is a transient phenomenon. In 1991, the International Ultraviolet Explorer satellite detected hydroxyl emission from Ceres, but not in 1990. Then, in 2007, the European Southern Observatory's Very Large Telescope searched for a hydroxide emission, but came up empty. The European Space Agency's Herschel Space Observatory detected water in the possible weak atmosphere, or "exosphere," of Ceres on three occasions, but did not on a fourth attempt.

As Dawn began its thorough study of Ceres in March 2015, scientists found ample evidence for water in the form of ice. The spacecraft's gamma ray and neutron detector (GRaND) has found that the uppermost surface is rich in hydrogen, which is consistent with broad expanses of water ice. This ice is nearer to the surface at higher latitudes, where temperatures are lower, a 2016 study published in the journal Science found. Ice has been detected directly at the small bright crater called Oxo and in at least one of the craters that are persistently in shadow in the northern hemisphere. Other research has suggested that persistently shadowed craters are likely to harbor ice. Additionally, the shapes of craters and other features are consistent with significant water-ice content in the crust.

Because of this evidence for abundant ice, many scientists think that Ceres' exosphere is created in a process similar to what occurs on comets, even though they are much smaller. In that model, the closer Ceres gets to the Sun, the more water vapor is released because of ice sublimating near or at the surface.

But the new study suggests comet-like behavior may not explain the mix of detections and non-detections of a weak atmosphere.

"Sublimation probably is present, but we don't think it's significant enough to produce the amount of exosphere that we're seeing," Villarreal said.

Villarreal and colleagues showed that past detections of the transient atmosphere coincided with higher concentrations of energetic protons from the Sun. Non-detections coincided with lower concentrations of these particles. What's more, the best detections of Ceres' atmosphere did not occur at its closest approach to the Sun. This suggests that solar activity, rather than Ceres' proximity to the Sun, is a more important factor in generating an exosphere.

The research began with a 2016 Science study led by Chris Russell. The study, using GRaND data, suggested that, during a six-day period in 2015, Ceres had accelerated electrons from the solar wind to very high energies.

In its orbital path, Ceres is currently getting closer to the Sun. But the Sun is now in a particularly quiet period, expected to last for several more years. Since their results indicate Ceres' exosphere is related to solar activity, study authors are predicting that the dwarf planet will have little to no atmosphere for some time. However, they recommend that other observatories monitor Ceres for future emissions.

Dawn is now in its extended mission and studying Ceres in a highly elliptical orbit. Engineers are maneuvering the spacecraft to a different orbital plane so that Ceres can be viewed in a new geometry. The primary science objective is to measure cosmic rays to help determine which chemical elements lie near the surface of Ceres. As a bonus, in late April, the Sun will be directly behind Dawn, when the spacecraft is at an altitude of about 12,300 miles (20,000 kilometers). Ceres will appear brighter than before in that configuration, and perhaps reveal more secrets about its composition and history.

The Dawn mission is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team.

Source: Jet Propulsion Laboratory

Wednesday, March 22, 2017

Dawn Update: Ceres In All of Its Icy, Tilted Glory...

An animated GIF showing the location of ice deposits on the surface of dwarf planet Ceres...as seen by NASA's Dawn spacecraft.
NASA / JPL - Caltech / UCLA / MPS / DLR / IDA

Ice in Ceres' Shadowed Craters Linked to Tilt History (News Release)

Dwarf planet Ceres may be hundreds of millions of miles from Jupiter, and even farther from Saturn, but the tremendous influence of gravity from these gas giants has an appreciable effect on Ceres' orientation. In a new study, researchers from NASA's Dawn mission calculate that the axial tilt of Ceres -- the angle at which it spins as it journeys around the Sun -- varies widely over the course of about 24,500 years. Astronomers consider this to be a surprisingly short period of time for such dramatic deviations.

Changes in axial tilt, or "obliquity," over the history of Ceres are related to the larger question of where frozen water can be found on Ceres' surface, scientists report in the journal Geophysical Research Letters. Given conditions on Ceres, ice would only be able to survive at extremely cold temperatures -- for example, in areas that never see the Sun.

"We found a correlation between craters that stay in shadow at maximum obliquity, and bright deposits that are likely water ice," said Anton Ermakov, postdoctoral researcher at NASA's Jet Propulsion Laboratory, Pasadena, California, and lead author of the study. "Regions that never see sunlight over millions of years are more likely to have these deposits."

Cycles of Obliquity

Throughout the last 3 million years, Ceres has gone through cycles where its tilt ranges from about 2 degrees to about 20 degrees, calculations indicate.

"We cannot directly observe the changes in Ceres' orientation over time, so we used the Dawn spacecraft's measurements of shape and gravity to precisely reconstruct what turned out to be a dynamic history," said Erwan Mazarico, a co-author at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

The last time the dwarf planet reached a maximum tilt, which was about 19 degrees, was 14,000 years ago, researchers said. For comparison, Earth is tilted 23.5 degrees. This significant tilt causes our planet to experience seasons: The northern hemisphere experiences summer when it is oriented toward the Sun, and winter when it's pointed away from the Sun. By contrast, Ceres' current tilt is about 4 degrees, so it will not have such strong seasonal effects over the course of a year there (which is about 4.6 Earth years).

How Obliquity Relates to Ice

When the axial tilt is small, relatively large regions on Ceres never receive direct sunlight, particularly at the poles. These persistently shadowed regions occupy an area of about 800 square miles (2,000 square kilometers). But when the obliquity increases, more of the craters in the polar regions receive direct exposure to the Sun, and persistently shadowed areas only occupy 0.4 to 4 square miles (1 to 10 square kilometers). These areas on Ceres' surface, which stay in shadow even at high obliquity, may be cold enough to maintain surface ice, Dawn scientists said.

These craters with areas that stay in shadow over long periods of time are called "cold traps," because they are so cold and dark that volatiles -- substances easily vaporized -- that migrate into these areas can't escape, even over a billion years. A 2016 study by the Dawn team in Nature Astronomy found bright material in 10 of these craters, and data from Dawn's visible and infrared mapping spectrometer indicate that one of them contains ice.

The new study focused on polar craters and modeled how shadowing progresses as Ceres' axial tilt varies. In the northern hemisphere, only two persistently shadowed regions remain in shadow at the maximum 20-degree tilt. Both of these regions have bright deposits today. In the southern hemisphere, there are also two persistently shadowed regions at highest obliquity, and one of them clearly has a bright deposit.

Shadowed Regions in Context

Ceres is the third body in the solar system found to have permanently shadowed regions. Mercury and Earth's Moon are the other two, and scientists believe they received their ice from impacting bodies. However, Mercury and the Moon do not have such wide variability in their tilts because of the stabilizing gravitational influence of the Sun and Earth, respectively. The origin of the ice in Ceres' cold traps is more mysterious -- it may come from Ceres itself, or may be delivered by impacts from asteroids and comets. Regardless, the presence of ice in cold traps could be related to a tenuous water atmosphere, which was detected by ESA's Herschel Space Observatory in 2012-13. Water molecules that leave the surface would fall back onto Ceres, with some landing in cold traps and accumulating there.

"The idea that ice could survive on Ceres for long periods of time is important as we continue to reconstruct the dwarf planet's geological history, including whether it has been giving off water vapor," said Carol Raymond, deputy principal investigator of the Dawn mission and study co-author, based at JPL.

Dawn's mission is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team.

Source: Jet Propulsion Laboratory

Thursday, February 16, 2017

Dawn Update: Finding (Slight) Ingredients for Life on the Surface of a Dwarf Planet...

An enhanced image of dwarf planet Ceres...with organics data (shaded in red) taken by NASA's Dawn spacecraft overlaid on the celestial body.
NASA / JPL - Caltech / UCLA / MPS / DLR / IDA

Dawn Discovers Evidence for Organic Material on Ceres (News Release)

NASA's Dawn mission has found evidence for organic material on Ceres, a dwarf planet and the largest body in the main asteroid belt between Mars and Jupiter. Scientists using the spacecraft's visible and infrared mapping spectrometer (VIR) detected the material in and around a northern-hemisphere crater called Ernutet. Organic molecules are interesting to scientists because they are necessary, though not sufficient, components of life on Earth.

The discovery adds to the growing list of bodies in the solar system where organics have been found. Organic compounds have been found in certain meteorites as well as inferred from telescopic observations of several asteroids. Ceres shares many commonalities with meteorites rich in water and organics -- in particular, a meteorite group called carbonaceous chondrites. This discovery further strengthens the connection between Ceres, these meteorites and their parent bodies.

"This is the first clear detection of organic molecules from orbit on a main belt body," said Maria Cristina De Sanctis, lead author of the study, based at the National Institute of Astrophysics, Rome. The discovery is reported in the journal Science.

Data presented in the Science paper support the idea that the organic materials are native to Ceres. The carbonates and clays previously identified on Ceres provide evidence for chemical activity in the presence of water and heat. This raises the possibility that the organics were similarly processed in a warm water-rich environment.

Significance of organics

The organics discovery adds to Ceres' attributes associated with ingredients and conditions for life in the distant past. Previous studies have found hydrated minerals, carbonates, water ice, and ammoniated clays that must have been altered by water. Salts and sodium carbonate, such as those found in the bright areas of Occator Crater, are also thought to have been carried to the surface by liquid.

“This discovery adds to our understanding of the possible origins of water and organics on Earth,” said Julie Castillo-Rogez, Dawn project scientist based at NASA's Jet Propulsion Laboratory in Pasadena, California.

Where are the organics?

The VIR instrument was able to detect and map the locations of this material because of its special signature in near-infrared light.

The organic materials on Ceres are mainly located in an area covering approximately 400 square miles (about 1,000 square kilometers). The signature of organics is very clear on the floor of Ernutet Crater, on its southern rim and in an area just outside the crater to the southwest. Another large area with well-defined signatures is found across the northwest part of the crater rim and ejecta. There are other smaller organic-rich areas several miles (kilometers) west and east of the crater. Organics also were found in a very small area in Inamahari Crater, about 250 miles (400 kilometers) away from Ernutet.

In enhanced visible color images from Dawn's framing camera, the organic material is associated with areas that appear redder with respect to the rest of Ceres. The distinct nature of these regions stands out even in low-resolution image data from the visible and infrared mapping spectrometer.

"We're still working on understanding the geological context for these materials," said study co-author Carle Pieters, professor of geological sciences at Brown University, Providence, Rhode Island.

Next steps for Dawn

Having completed nearly two years of observations in orbit at Ceres, Dawn is now in a highly elliptical orbit at Ceres, going from an altitude of 4,670 miles (7,520 kilometers) up to almost 5,810 miles (9,350 kilometers). On Feb. 23, it will make its way to a new altitude of around 12,400 miles (20,000 kilometers), about the height of GPS satellites above Earth, and to a different orbital plane. This will put Dawn in a position to study Ceres in a new geometry. In late spring, Dawn will view Ceres with the sun directly behind the spacecraft, such that Ceres will appear brighter than before, and perhaps reveal more clues about its nature.

The Dawn mission is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team.

Source: NASA.Gov

Wednesday, January 04, 2017

Getting 'Psyched' Up for NASA's Two New Interplanetary Missions...

An artist's concept of the Psyche spacecraft orbiting a metallic asteroid named Psyche.
NASA / JPL - Caltech

NASA Selects Two Missions to Explore the Early Solar System (Press Release)

NASA has selected two missions that have the potential to open new windows on one of the earliest eras in the history of our solar system – a time less than 10 million years after the birth of our sun. The missions, known as Lucy and Psyche, were chosen from five finalists and will proceed to mission formulation, with the goal of launching in 2021 and 2023, respectively.

“Lucy will visit a target-rich environment of Jupiter’s mysterious Trojan asteroids, while Psyche will study a unique metal asteroid that’s never been visited before,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate in Washington. “This is what Discovery Program missions are all about – boldly going to places we’ve never been to enable groundbreaking science.”

Lucy, a robotic spacecraft, is scheduled to launch in October 2021. It’s slated to arrive at its first destination, a main belt asteroid, in 2025. From 2027 to 2033, Lucy will explore six Jupiter Trojan asteroids. These asteroids are trapped by Jupiter’s gravity in two swarms that share the planet’s orbit, one leading and one trailing Jupiter in its 12-year circuit around the sun. The Trojans are thought to be relics of a much earlier era in the history of the solar system, and may have formed far beyond Jupiter’s current orbit.

“This is a unique opportunity,” said Harold F. Levison, principal investigator of the Lucy mission from the Southwest Research Institute in Boulder, Colorado. “Because the Trojans are remnants of the primordial material that formed the outer planets, they hold vital clues to deciphering the history of the solar system. Lucy, like the human fossil for which it is named, will revolutionize the understanding of our origins.”

Lucy will build on the success of NASA’s New Horizons mission to Pluto and the Kuiper Belt, using newer versions of the RALPH and LORRI science instruments that helped enable the mission’s achievements. Several members of the Lucy mission team also are veterans of the New Horizons mission. Lucy also will build on the success of the OSIRIS-REx mission to asteroid Bennu, with the OTES instrument and several members of the OSIRIS-REx team.

The Psyche mission will explore one of the most intriguing targets in the main asteroid belt – a giant metal asteroid, known as 16 Psyche, about three times farther away from the sun than is the Earth. This asteroid measures about 130 miles (210 kilometers) in diameter and, unlike most other asteroids that are rocky or icy bodies, is thought to be comprised mostly of metallic iron and nickel, similar to Earth’s core. Scientists wonder whether Psyche could be an exposed core of an early planet that could have been as large as Mars, but which lost its rocky outer layers due to a number of violent collisions billions of years ago.

The mission will help scientists understand how planets and other bodies separated into their layers – including cores, mantles and crusts – early in their histories.

“This is an opportunity to explore a new type of world – not one of rock or ice, but of metal,” said Psyche Principal Investigator Lindy Elkins-Tanton of Arizona State University in Tempe. “16 Psyche is the only known object of its kind in the solar system, and this is the only way humans will ever visit a core. We learn about inner space by visiting outer space.”

Psyche, also a robotic mission, is targeted to launch in October of 2023, arriving at the asteroid in 2030, following an Earth gravity assist spacecraft maneuver in 2024 and a Mars flyby in 2025.

In addition to selecting the Lucy and Psyche missions for formulation, the agency will extend funding for the Near Earth Object Camera (NEOCam) project for an additional year. The NEOCam space telescope is designed to survey regions of space closest to Earth’s orbit, where potentially hazardous asteroids may be found.

“These are true missions of discovery that integrate into NASA’s larger strategy of investigating how the solar system formed and evolved,” said NASA’s Planetary Science Director Jim Green. “We’ve explored terrestrial planets, gas giants, and a range of other bodies orbiting the sun. Lucy will observe primitive remnants from farther out in the solar system, while Psyche will directly observe the interior of a planetary body. These additional pieces of the puzzle will help us understand how the sun and its family of planets formed, changed over time, and became places where life could develop and be sustained – and what the future may hold.”

Discovery Program class missions like these are relatively low-cost, their development capped at about $450 million. They are managed for NASA’s Planetary Science Division by the Planetary Missions Program Office at Marshall Space Flight Center in Huntsville, Alabama. The missions are designed and led by a principal investigator, who assembles a team of scientists and engineers, to address key science questions about the solar system.

The Discovery Program portfolio includes 12 prior selections such as the MESSENGER mission to study Mercury, the Dawn mission to explore asteroids Vesta and Ceres, and the InSight Mars lander, scheduled to launch in May 2018.

NASA’s other missions to asteroids began with the NEAR orbiter of asteroid Eros, which arrived in 2000, and continues with Dawn, which orbited Vesta and now is in an extended mission phase at Ceres. The OSIRIS-REx mission, which launched on Sept. 8, 2016, is speeding toward a 2018 rendezvous with the asteroid Bennu, and will deliver a sample back to Earth in 2023. Each mission focuses on a different aspect of asteroid science to give scientists the broader picture of solar system formation and evolution.

Source: NASA.Gov

****