Sunday, June 30, 2019
Photos of the Day: A Boat Trip Off the Coast of Dana Point, CA...
Just thought I'd end this month with these photos—taken with my Nikon D3300 camera—that I shot during a whale-watching trip I went on almost three weeks ago (on June 11). I didn't see any whales on this excursion (though other folks on my boat say that they spotted the tail fin of a whale protruding from the water several miles away), but I did take lots of images of a pod of dolphins that surrounded my boat as it made its way out to sea. And before the boat returned to its dock at Dana Point harbor in Orange County, CA, the captain parked the vessel near a buoy where a couple of sea lions and a lone sea gull were resting on during that warm spring day. Of course, I didn't really need to tell you this when you could've just checked out all of the pics in this Blog entry!
Will I go whale-watching again, you ask? Definitely! Though I'll probably wait till October 4 (my birthday) to head back to Orange County. To paraphrase Wayne Campbell (Mike Myers) from the 1992 movie Wayne's World: "I will take whale photos with my DSLR camera... Oh yes, I will." Yep, that was cheesy. Happy Sunday!
Friday, June 28, 2019
Photo of the Day: The Mars 2020 Rover Gets a New Limb!
NASA / JPL - Caltech
Mars 2020 Rover's 7-Foot-Long Robotic Arm Installed (News Release)
In this image, taken on June 21, 2019, engineers at NASA's Jet Propulsion Laboratory near Pasadena, California, install the main robotic arm on the Mars 2020 rover. (A smaller arm to handle Mars samples will be installed inside the rover as well.) The main arm includes five electrical motors and five joints (known as the shoulder azimuth joint, shoulder elevation joint, elbow joint, wrist joint and turret joint). Measuring 7 feet (2.1 meters) long, the arm will allow the rover to work as a human geologist would: by holding and using science tools with its turret, which is essentially its "hand."
"You have to give a hand to our rover arm installation team," said Ryan van Schilifgaarde, a support engineer at JPL for Mars 2020 assembly. "They made an extremely intricate operation look easy. We're looking forward to more of the same when the arm will receive its turret in the next few weeks."
The rover's turret will include high-definition cameras, science instruments, and a percussive drill and coring mechanism. Those tools will be used to analyze and collect samples of Martian rock and soil, which will be cached on the surface for return to Earth by a future mission.
Mars 2020 will launch from Cape Canaveral Air Force Station in Florida in July of 2020. It will land at Jezero Crater on Feb. 18, 2021.
Charged with returning astronauts to the Moon by 2024, NASA's Artemis lunar exploration plans will establish a sustained human presence on and around the Moon by 2028. We will use what we learn on the Moon to prepare to send astronauts to Mars.
JPL is building and will manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency's headquarters in Washington.
If you want to send your name to Mars with NASA's 2020 mission, you can do so until Sept. 30, 2019. Add your name to the list and obtain a souvenir boarding pass to Mars here:
https://go.nasa.gov/Mars2020Pass
Source: Jet Propulsion Laboratory
Thursday, June 27, 2019
Dragonfly Is Officially Heading to Titan!
Johns Hopkins APL
NASA Selects Flying Mission to Study Titan for Origins, Signs of Life (Press Release)
NASA has announced that our next destination in the solar system is the unique, richly organic world Titan. Advancing our search for the building blocks of life, the Dragonfly mission will fly multiple sorties to sample and examine sites around Saturn’s icy moon.
Dragonfly will launch in 2026 and arrive in 2034. The rotorcraft will fly to dozens of promising locations on Titan looking for prebiotic chemical processes common on both Titan and Earth. Dragonfly marks the first time NASA will fly a multi-rotor vehicle for science on another planet; it has eight rotors and flies like a large drone. It will take advantage of Titan’s dense atmosphere – four times denser than Earth’s – to become the first vehicle ever to fly its entire science payload to new places for repeatable and targeted access to surface materials.
Titan is an analog to the very early Earth, and can provide clues to how life may have arisen on our planet. During its 2.7-year baseline mission, Dragonfly will explore diverse environments from organic dunes to the floor of an impact crater where liquid water and complex organic materials key to life once existed together for possibly tens of thousands of years. Its instruments will study how far prebiotic chemistry may have progressed. They also will investigate the moon’s atmospheric and surface properties and its subsurface ocean and liquid reservoirs. Additionally, instruments will search for chemical evidence of past or extant life.
“With the Dragonfly mission, NASA will once again do what no one else can do,” said NASA Administrator Jim Bridenstine. “Visiting this mysterious ocean world could revolutionize what we know about life in the universe. This cutting-edge mission would have been unthinkable even just a few years ago, but we’re now ready for Dragonfly’s amazing flight.”
Dragonfly took advantage of 13 years’ worth of Cassini data to choose a calm weather period to land, along with a safe initial landing site and scientifically interesting targets. It will first land at the equatorial “Shangri-La” dune fields, which are terrestrially similar to the linear dunes in Namibia in southern Africa and offer a diverse sampling location. Dragonfly will explore this region in short flights, building up to a series of longer “leapfrog” flights of up to 5 miles (8 kilometers), stopping along the way to take samples from compelling areas with diverse geography. It will finally reach the Selk impact crater, where there is evidence of past liquid water, organics – the complex molecules that contain carbon, combined with hydrogen, oxygen, and nitrogen – and energy, which together make up the recipe for life. The lander will eventually fly more than 108 miles (175 kilometers) – nearly double the distance traveled to date by all the Mars rovers combined.
“Titan is unlike any other place in the solar system, and Dragonfly is like no other mission,” said Thomas Zurbuchen, NASA’s associate administrator for Science at the agency’s Headquarters in Washington. “It’s remarkable to think of this rotorcraft flying miles and miles across the organic sand dunes of Saturn’s largest moon, exploring the processes that shape this extraordinary environment. Dragonfly will visit a world filled with a wide variety of organic compounds, which are the building blocks of life and could teach us about the origin of life itself.”
Titan has a nitrogen-based atmosphere like Earth. Unlike Earth, Titan has clouds and rain of methane. Other organics are formed in the atmosphere and fall like light snow. The moon’s weather and surface processes have combined complex organics, energy, and water similar to those that may have sparked life on our planet.
Titan is larger than the planet Mercury and is the second largest moon in our solar system. As it orbits Saturn, it is about 886 million miles (1.4 billion kilometers) away from the Sun, about 10 times farther than Earth. Because it is so far from the Sun, its surface temperature is around -290 degrees Fahrenheit (-179 degrees Celsius). Its surface pressure is also 50 percent higher than Earth’s.
Dragonfly was selected as part of the agency’s New Frontiers program, which includes the New Horizons mission to Pluto and the Kuiper Belt, Juno to Jupiter, and OSIRIS-REx to the asteroid Bennu. Dragonfly is led by Principal Investigator Elizabeth Turtle, who is based at Johns Hopkins University’s Applied Physics Laboratory in Laurel, Maryland. New Frontiers supports missions that have been identified as top solar system exploration priorities by the planetary community. The program is managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Planetary Science Division in Washington.
“The New Frontiers program has transformed our understanding of the solar system, uncovering the inner structure and composition of Jupiter’s turbulent atmosphere, discovering the icy secrets of Pluto’s landscape, revealing mysterious objects in the Kuiper belt, and exploring a near-Earth asteroid for the building blocks of life,” said Lori Glaze, director of NASA’s Planetary Science Division. “Now we can add Titan to the list of enigmatic worlds NASA will explore.”
****
Johns Hopkins APL
Tuesday, June 25, 2019
LightSail 2 Finally Reaches for the Cosmos...
SpaceX
The Planetary Society Celebrates Launch of LightSail 2 (Press Release)
Bill Nye, CEO: "We are democratizing space."
Cape Canaveral, FL (June 25, 2019) – LightSail 2 is officially in space! The Planetary Society's solar sail CubeSat lifted off from Kennedy Space Center, Florida on 25 June at 02:30 EDT (06:30 UTC). The late-night launch came courtesy of SpaceX's triple-booster Falcon Heavy rocket, which was carrying 24 spacecraft for the U.S. Air Force's STP-2 mission.
Launch was originally scheduled to occur at 23:30 EDT on 24 June (03:30 UTC on 25 June). SpaceX delayed the liftoff time by 3 hours to complete additional ground system checkouts.
During its ride to orbit, LightSail 2 was tucked safely inside its Prox-1 carrier spacecraft. The Falcon Heavy upper stage's payload stack released Prox-1 about an hour and 20 minutes after liftoff, at an altitude of roughly 720 kilometers. Prox-1 will house LightSail 2 for 1 week, allowing time for other vehicles released into the same orbit to drift apart so each can be identified individually. LightSail 2 deployment is set for 2 July.
"After that spectacular nighttime launch, the flight team is ready to operate the LightSail 2 spacecraft," said LightSail 2 project manager David Spencer. "We will be listening for the radio signal in a week, following the release of LightSail 2 from Prox-1."
Bruce Betts, Planetary Society chief scientist and LightSail 2 program manager, added, "After years of hard work we are ecstatic with the launch and looking forward to doing some solar sailing."
In a video message to Planetary Society members, CEO Bill Nye, said, "The SpaceX Falcon Heavy took our spacecraft up and on orbit, thanks to you. Thank you all so much. We are advancing space science and exploration. We are democratizing space. We are innovating."
About 500 Planetary Society members and supporters were on hand at the Kennedy Space Center Apollo-Saturn V Center to watch their crowdfunded spacecraft take flight. Sound from the Falcon Heavy's 27 engines rumbled through the viewing area, as the rocket blazed high into the sky before starting its arc out over the Atlantic Ocean. Both of the rocket's side boosters flew back to Cape Canaveral for upright landings, creating sonic booms that delighted the raucous crowd.
SpaceX's live feed from mission control in Hawthorne, California followed the rocket's center booster as it attempted to land on the drone ship Of Course I Still Love You. The booster’s exhaust plume briefly appeared on camera before apparently crashing into the ocean. The landing was not a requirement for mission success.
Meanwhile, the upper stage blasted on to its first stop, an orbit roughly 865 by 300 kilometers above Earth. There, it deployed several CubeSats and a small satellite before lighting its engine again and flying to a circular orbit of about 720 kilometers. Prox-1 was the first spacecraft off the rocket there.
LightSail 2 team members will soon converge at Cal Poly San Luis Obispo in California, where the spacecraft’s mission control is located. Once LightSail 2 is released from Prox-1 on 2 July, the team will spend several days checking out the CubeSat’s systems before commanding its dual-sided solar panels to deploy. Following that, the spacecraft's solar sails will be deployed, roughly 2 weeks in total from launch day.
Source: The Planetary Society
****
SpaceX
The Planetary Society
Thursday, June 13, 2019
Just Some Random Political News for Today...
So it was announced earlier today that Sarah Huckabee Sanders will be resigning from her job as White House Press Secretary by the end of this month. On one hand, good riddance! On the other hand, it's unfortunate...since I will no longer be able to use the meme above on any of my posts on Twitter starting in July. Farewell, Sanders— You will forever be known by smart, non-MAGA folks as the 'Baghdad Bob' of the Trump regime. Google that name if you're unfamiliar with it.
Two oil tankers have been sunk in the Gulf of Oman, increasing oil prices. There's no way in hell Iran would have the stupidity to do this. Who else reckons it's America's pretext for invasion? It simply screams False Flag! Suddenly 9/11 conspiracy theories don't seem so crazy...
— RD Hale 🌹 (@SkyeCitySeries) June 13, 2019
Oh, and in other news, the bombing of those two oil tankers in the Gulf of Oman today is nothing more than a false flag. Google 'Gulf of Tonkin' to know why. Also, Trump lied in the tweet below about the length of time that Sarah Sanders served in the White House. The Dotard has been in the Oval Office for a little over two years (unfortunately), so how can the woman whose brother murders dogs serve in the White House for 3 1/2 years as mentioned below? Unless, of course, Trump was also including the time that Sanders spent on his presidential campaign in 2016. Is this another "The Moon is part of Mars" Twitter flub by the stable genius? Google that term if you don't know what I'm talking about. That is all.
After 3 1/2 years, our wonderful Sarah Huckabee Sanders will be leaving the White House at the end of the month and going home to the Great State of Arkansas....
— Donald J. Trump (@realDonaldTrump) June 13, 2019
EDIT (9:39 PM, PDT): The Toronto Raptors are the 2019 NBA Champions! No Kevin Durant, no Klay Thompson (towards the end of tonight's game)... Keep your heads up, Warriors.
Now head to the Lakers, Kawhi Leonard! Fat chance.
Wednesday, June 12, 2019
A Blog Entry About Protecting Your Heart While on the Road... Please Read!
This could save my life one day and maybe yours too... If you are my age and have had a good life then you may want to skim this.
Please pause for 2 minutes and read this:
1.) Let’s say it’s 7:25 PM and you’re going home (alone of course) after an unusually hard day on the job.
2.) You’re really tired, upset and frustrated.
3.) Suddenly, you start experiencing severe pain in your chest that starts to drag out into your arm and up in to your jaw. You are only about 5 kilometers from the hospital nearest your home.
4.) Unfortunately, you don’t know if you’ll be able to make it that far.
5.) You have been trained in CPR, but the guy who taught the course did not tell you how to perform it on yourself.
6.) HOW TO SURVIVE A HEART ATTACK WHEN ALONE? Since many people are alone when they suffer a heart attack without help, the person whose heart is beating improperly and who begins to feel faint, has only about 10 seconds left before losing consciousness.
7.) However, these victims can help themselves by coughing repeatedly and very vigorously. A deep breath should be taken before each cough, and the cough must be deep and prolonged, as when producing sputum from deep inside the chest. A breath and a cough must be repeated about every two seconds without let-up until help arrives, or until the heart is felt to be beating normally again.
8.) Deep breaths get oxygen into the lungs and coughing movements squeeze the heart and keep the blood circulating. The squeezing pressure on the heart also helps it regain normal rhythm. In this way, heart attack victims can get to a hospital.
9.) Tell as many other people as possible about this. It could save their lives!
Thursday, June 06, 2019
Photo and Video of the Day: Get to da (Mars) Choppa!
NASA / JPL - Caltech
NASA's Mars Helicopter Testing Enters Final Phase (News Release)
NASA's Mars Helicopter flight demonstration project has passed a number of key tests with flying colors. In 2021, the small, autonomous helicopter will be the first vehicle in history to attempt to establish the viability of heavier-than-air vehicles flying on another planet.
"Nobody's built a Mars Helicopter before, so we are continuously entering new territory," said MiMi Aung, project manager for the Mars Helicopter at NASA's Jet Propulsion Laboratory near Pasadena, California. "Our flight model - the actual vehicle that will travel to Mars - has recently passed several important tests."
Back in January 2019 the team operated the flight model in a simulated Martian environment. Then the helicopter was moved to Lockheed Martin Space in Denver for compatibility testing with the Mars Helicopter Delivery System, which will hold the 4-pound (1.8-kilogram) spacecraft against the belly of the Mars 2020 rover during launch and interplanetary cruise before deploying it onto the surface of Mars after landing.
As a technology demonstrator, the Mars Helicopter carries no science instruments. Its purpose is to confirm that powered flight in the tenuous Martian atmosphere (which has 1% the density of Earth's) is possible and that it can be controlled from Earth over large interplanetary distances. But the helicopter also carries a camera capable of providing high-resolution color images to further demonstrate the vehicle's potential for documenting the Red Planet.
Future Mars missions could enlist second-generation helicopters to add an aerial dimension to their explorations. They could investigate previously unvisited or difficult-to-reach destinations such as cliffs, caves and deep craters, act as scouts for human crews or carry small payloads from one location to another. But before any of that happens, a test vehicle has to prove it is possible.
In Denver, the Mars Helicopter and its delivery system were checked to make sure that the electrical connections and mechanisms that linked the flight vehicle with its cradle fit snuggly. Then, while still mated, the duo endured the sorts of vibrations they will experience during launch and in-flight operations. The thermal vacuum portion of the testing introduced them to the kinds of extreme temperatures (down to -200 degrees Fahrenheit, or -129 degrees Celsius) that they will encounter in space and on Mars and that could cause components to malfunction or fail.
The Mars Helicopter returned to JPL on May 11, 2019, for further testing and finishing touches. Among the highlights: A new solar panel that will power the helicopter has been installed, and the vehicle's rotor blades have been spun up to ensure that the more than 1,500 individual pieces of carbon fiber, flight-grade aluminum, silicon, copper, foil and aerogel continue to work as a cohesive unit. Of course, there's more testing to come.
"We expect to complete our final tests and refinements and deliver the helicopter to the High Bay 1 clean room for integration with the rover sometime this summer," said Aung, "but we will never really be done with testing the helicopter until we fly at Mars."
The Mars Helicopter will launch with the Mars 2020 rover on a United Launch Alliance Atlas V rocket in July 2020 from Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida. When it lands in Jezero Crater on Feb. 18, 2021, the rover will also be the first spacecraft in the history of planetary exploration with the ability to accurately retarget its point of touchdown during the landing sequence.
The 2020 rover will conduct geological assessments of its landing site on Mars, determine the habitability of the environment, search for signs of ancient Martian life and assess natural resources and hazards for future human explorers. In another first, scientists will use the instruments aboard the rover to identify and collect samples of rock and soil, encase them in sealed tubes, and leave them on the planet's surface for potential return to Earth on a future Mars mission.
JPL is building and will manage operations of the Mars 2020 rover and Mars Helicopter for the NASA Science Mission Directorate at the agency's headquarters in Washington. NASA's Launch Services Program, based at the agency's Kennedy Space Center in Florida, is responsible for launch management.
If you want to send your name to Mars with NASA's 2020 mission you can do so until Sept. 30, 2019. Add your name to the list and obtain a souvenir boarding pass to Mars here:
https://go.nasa.gov/Mars2020Pass
Source: Jet Propulsion Laboratory
****
Wednesday, June 05, 2019
InSight Update: Engineers Devise a Way to Salvage the Mars Lander's Heat Probe Experiment...
NASA / JPL - Caltech
InSight's Team Tries New Strategy to Help the 'Mole' (News Release)
Scientists and engineers have a new plan for getting NASA InSight's heat probe, also known as the "mole," digging again on Mars. Part of an instrument called the Heat Flow and Physical Properties Package (HP3), the mole is a self-hammering spike designed to dig as much as 16 feet (5 meters) below the surface and record temperature.
But the mole hasn't been able to dig deeper than about 12 inches (30 centimeters) below the Martian surface since Feb. 28, 2019. The device's support structure blocks the lander's cameras from viewing the mole, so the team plans to use InSight's robotic arm to lift the structure out of the way. Depending on what they see, the team might use InSight's robotic arm to help the mole further later this summer.
HP3 is one of InSight's several experiments, all of which are designed to give scientists their first look at the deep interior of the Red Planet. InSight also includes a seismometer that recently recorded its first marsquake on April 6, 2019, followed by its largest seismic signal to date at 7:23 p.m. PDT (10:23 EDT) on May 22, 2019 — what is believed to be a marsquake of magnitude 3.0.
For the last several months, testing and analysis have been conducted at NASA's Jet Propulsion Laboratory in Pasadena, California, which leads the InSight mission, and the German Aerospace Center (DLR), which provided HP3, to understand what is preventing the mole from digging. Team members now believe the most likely cause is an unexpected lack of friction in the soil around InSight — something very different from soil seen on other parts of Mars. The mole is designed so that loose soil flows around it, adding friction that works against its recoil, allowing it to dig. Without enough friction, it will bounce in place.
"Engineers at JPL and DLR have been working hard to assess the problem," said Lori Glaze, director of NASA's Planetary Science Division. "Moving the support structure will help them gather more information and try at least one possible solution."
The lifting sequence will begin in late June, with the arm grasping the support structure (InSight conducted some test movements recently). Over the course of a week, the arm will lift the structure in three steps, taking images and returning them so that engineers can make sure the mole isn't being pulled out of the ground while the structure is moved. If removed from the soil, the mole can't go back in.
The procedure is not without risk. However, mission managers have determined that these next steps are necessary to get the instrument working again.
"Moving the support structure will give the team a better idea of what's happening. But it could also let us test a possible solution," said HP3 Principal Investigator Tilman Spohn of DLR. "We plan to use InSight's robotic arm to press on the ground. Our calculations have shown this should add friction to the soil near the mole."
A Q & A with team members about the mole and the effort to save it is at: https://mars.nasa.gov/news/8444/common-questions-about-insights-mole/?site=insight
JPL manages InSight for NASA's Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by the agency's Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.
A number of European partners, including France's Centre National d'Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain's Centro de Astrobiología (CAB) supplied the temperature and wind sensors.
Source: Jet Propulsion Laboratory
Saturday, June 01, 2019
Mars 2020 Update: Expect 3D Images from America's Next Red Planet Rover, Starting in 2021...
NASA / JPL - Caltech
NASA's Mars 2020 Gets HD Eyes (News Release - May 31)
One of the first operations the Mars 2020 rover will perform after touching down on the Red Planet's Jezero Crater on Feb. 18, 2021, will be to raise its remote sensing mast (RSM), which carries important optics and instrumentation.
In this picture - taken on May 23, 2019, in the Spacecraft Assembly Facility's High Bay 1 clean room at the Jet Propulsion Laboratory near Pasadena, California - engineers re-install the cover to the RSM head after integration of two Mastcam-Z high-definition cameras. Visible below the red lens cover is the left Mastcam-Z camera (with the "Remove Before Flight" labels); support equipment blocks the right Mastcam-Z from view. The RSM and its twin cameras will be installed on the rover's deck the week of June 3, 2019.
Mastcam-Z is a multispectral, stereoscopic imaging instrument that will enhance the Mars 2020 rover's driving and core-sampling capabilities. It will also enable science team members to observe textural, mineralogical, structural and morphologic details in rocks and sediment at any location within the rover's field of view, helping them piece together the planet's geologic history.
"Mastcam-Z will be the first Mars color camera that can zoom, enabling 3D images at unprecedented resolution," said Mastcam-Z Principal Investigator Jim Bell of Arizona State University in Tempe. "With a resolution of three-hundredths of an inch [0.8 millimeters] in front of the rover and less than one-and-a-half inches [38 millimeters] from over 330 feet [100 meters] away - Mastcam-Z images will play a key role in selecting the best possible samples to return from Jezero Crater."
Mastcam Z's capabilities are not the only firsts of the mission. Mars 2020 will be the first spacecraft in the history of planetary exploration with the ability to accurately retarget its point of touchdown during the landing sequence. And the rover carries a sample-caching system that will collect Martian rock and soil samples and store them on the planet's surface for retrieval and return to Earth by subsequent missions.
Mars 2020 will launch from Cape Canaveral Air Force Station in Florida in July of 2020.
JPL is building and will manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency's headquarters in Washington.
If you want to send your name to Mars with NASA's 2020 mission, you can do so from now until Sept. 30, 2019. Add your name to the list and obtain a souvenir boarding pass to Mars here:
https://go.nasa.gov/Mars2020Pass
Source: Jet Propulsion Laboratory