Wednesday, December 18, 2019
Photos of the Day: IMPEACHED!!!
Today is the day that was over two years in the making. The U.S. House of Representatives officially voted—on two articles that involved the abuse of power and obstruction of justice—to impeach Donald Trump. About damn time! The articles of impeachment will soon be transferred over to the U.S. Senate...which will begin Trump's trial next month.
On the downside, the Senate is currently controlled by the Republican party—so Mitch "Complicit turtle-faced traitorous bastard" McConnell, Lindsey "I am compromised like you wouldn't believe" Graham and all of the other cowardly GOP lackwits will ensure that Trump will be acquitted when the trial reaches the verdict phase. On the upside, though, Trump will forever be lumped together with Bill Clinton, Andrew Johnson and Richard Nixon...even though the latter resigned before he was impeached. So much for your legacy, Trump—and you still have to deal with the criminal charges wrought upon you by the state of New York after your reign of ineptitude inevitably reaches its long-awaited conclusion. You're fired!
Monday, December 16, 2019
NASA's Next X-Plane Moves a Step Closer to Reality...
Lockheed Martin
NASA’s X-59 Quiet Supersonic Research Aircraft Cleared for Final Assembly (Press Release)
NASA’s first large scale, piloted X-plane in more than three decades is cleared for final assembly and integration of its systems following a major project review by senior managers held Thursday at NASA Headquarters in Washington.
The management review, known as Key Decision Point-D (KDP-D), was the last programmatic hurdle for the X-59 Quiet SuperSonic Technology (QueSST) aircraft to clear before officials meet again in late 2020 to approve the airplane’s first flight in 2021.
“With the completion of KDP-D we’ve shown the project is on schedule, it’s well planned and on track. We have everything in place to continue this historic research mission for the nation’s air-traveling public,” said Bob Pearce, NASA’s associate administrator for Aeronautics.
The X-59 is shaped to reduce the loudness of a sonic boom reaching the ground to that of a gentle thump, if it is heard at all. It will be flown above select U.S. communities to generate data from sensors and people on the ground in order to gauge public perception. That data will help regulators establish new rules to enable commercial supersonic air travel over land.
Construction of the X-59, under a $247.5 million cost-plus-incentive-fee contract, is continuing at Lockheed Martin Aeronautics Company’s Skunk Works factory in Palmdale, California.
Three major work areas are actively set up for building the airplane’s main fuselage, wing and empennage. Final assembly and integration of the airplane’s systems – including an innovative cockpit eXternal Visibility System – is targeted for late 2020.
Management of the X-59 QueSST development and construction falls under the Low Boom Flight Demonstrator project, which is part of NASA’s Integrated Aviation Systems Program.
****
Lockheed Martin
Saturday, December 14, 2019
Hubble Photographs Our Newest Interstellar Interloper...
NASA, ESA and D. Jewitt (UCLA)
Interstellar Comet 2I/Borisov Swings Past Sun (News Release - December 12)
When astronomers see something in the universe that at first glance seems like one-of-a-kind, it's bound to stir up a lot of excitement and attention. Enter comet 2I/Borisov. This mysterious visitor from the depths of space is the first identified comet to arrive here from another star. We don't know from where or when the comet started heading toward our Sun, but it won't hang around for long. The Sun's gravity is slightly deflecting its trajectory, but can't capture it because of the shape of its orbit and high velocity of about 100,000 miles per hour.
Telescopes around the world have been watching the fleeting visitor. NASA's Hubble Space Telescope has provided the sharpest views as the comet skirts by our Sun. Since October the space telescope has been following the comet like a sports photographer following horses speeding around a racetrack. Hubble revealed that the heart of the comet, a loose agglomeration of ices and dust particles, is likely no more than about 3,200 feet across, about the length of nine football fields. Though comet Borisov is the first of its kind, no doubt there are many other comet vagabonds out there, plying the space between stars. Astronomers will eagerly be on the lookout for the next mysterious visitor from far beyond.
These two images (above), taken by Hubble, capture comet 2I/Borisov streaking though our solar system and on its way back to interstellar space. It is only the second interstellar object known to have passed through the solar system.
The comet appears in front of a distant background spiral galaxy (2MASX J10500165-0152029). The galaxy's bright central core is smeared in the image because Hubble was tracking the comet. Comet Borisov was approximately 203 million miles from Earth in this exposure. Its tail of ejected dust streaks off to the upper right. The comet has been artificially colored blue to discriminate fine detail in the halo of dust, or coma, surrounding the central nucleus. It also helps to visually separate the comet from the background galaxy.
Dec. 9, 2019, Photo (Above Right)
Hubble revisited the comet shortly after its closest approach to the Sun where it received maximum heating after spending most of its life in frigid interstellar space. The comet also reached a breathtaking maximum speed of about 100,000 miles per hour. Comet Borisov is 185 million miles from Earth in this photo, near the inner edge of the Asteroid Belt but below it. The nucleus, an agglomeration of ices and dust, is still too small to be resolved. The bright central portion is a coma made up of dust leaving the surface. The comet will make its closest approach to Earth in late December at a distance of 180 million miles.
"Hubble gives us the best upper limit of the size of comet Borisov's nucleus, which is the really important part of the comet," said David Jewitt, a UCLA professor of planetary science and astronomy, whose team has captured the best and sharpest look at this first confirmed interstellar comet. "Surprisingly, our Hubble images show that its nucleus is more than 15 times smaller than earlier investigations suggested it might be. Our Hubble images show that the radius is smaller than half a kilometer. Knowing the size is potentially useful for beginning to estimate how common such objects may be in the solar system and our galaxy. Borisov is the first known interstellar comet, and we would like to learn how many others there are."
Crimean amateur astronomer Gennady Borisov discovered the comet on Aug. 30, 2019, and reported the position measurements to the International Astronomical Union's Minor Planet Center in Cambridge, Massachusetts. The Center for Near-Earth Object Studies at NASA's Jet Propulsion Laboratory in Pasadena, California, working with the Minor Planet Center, computed an orbit for the comet, which shows that it came from elsewhere in our Milky Way galaxy, point of origin unknown.
Nevertheless, observations by numerous telescopes show that the comet's chemical composition is similar to the comets found inside our solar system, providing evidence that comets also form around other stars. By the middle of 2020 the comet will have already zoomed past Jupiter's distance of 500 million miles on its way back into the frozen abyss of interstellar space.
The Hubble Space Telescope is a project of international cooperation between ESA (the European Space Agency) and NASA. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C. The Minor Planet Center and the Center for Near-Earth Orbit Studies are projects of NASA’s Near-Earth Object Observations Program of the Planetary Defense Coordination Office at NASA Headquarters.
Source: NASA.Gov
Friday, December 13, 2019
Another Mars 2020 Flight Component Arrives in Cape Canaveral, Florida...
Lockheed Martin
Lockheed Martin Delivers Mars 2020 Rover Aeroshell To Launch Site (Press Release)
Heat Shield and Backshell Will Protect NASA's Rover During Descent to Mars
DENVER, Dec. 13, 2019 -- The capsule-shaped aeroshell that will protect NASA's Mars 2020 rover was delivered to NASA's Kennedy Space Center, Florida yesterday. Built by Lockheed Martin, the aeroshell will encapsulate and protect the Mars 2020 rover during its deep space cruise to Mars, and from the intense heat as the entry system descends through the Martian atmosphere to the surface of Mars.
Because of the large mass and unique entry trajectory profile that could create external temperatures up to 3,800 degrees Fahrenheit, the heat shield uses a tiled Phenolic Impregnated Carbon Ablator (PICA) thermal protection system instead of the Mars heritage Super Lightweight Ablator (SLA) 561V. This will only be the second time PICA has flown on a Mars mission.
"Even though we have the experience of building the nearly identical aeroshell for the Curiosity Rover, the almost 15-foot diameter composite structure was just as big a challenge to build and test 10 years later," said Neil Tice, Mars 2020 aeroshell program manager at Lockheed Martin Space. "We've built every Mars aeroshell entry system for NASA of its 40 years of exploring Mars, so we pulled from that experience to build this important system."
Along with the Curiosity mission, this is the largest aeroshell/heat shield ever built for a planetary mission at 4.5 meters (nearly 15 feet) in diameter. In contrast, the aeroshell/heat shield of the InSight lander measured 8.6 feet and Apollo capsule heat shields measured just less than 13 feet.
The backshell and heat shield were transported from Lockheed Martin's Waterton facility in Littleton, Colorado where they were built, to nearby Buckley Air Force Base. They were then loaded onto an Air Force transport plane and flown to NASA's Kennedy Space Center.
Recently, Lockheed Martin integrated the MSL Entry Descent and Landing Instrument (MEDLI2) onto the heat shield and backshell. Provided by NASA's Langley and Ames Research Centers, MEDLI2 will collect temperature and pressure data during the spacecraft's descent through the Martian atmosphere.
The Mars 2020 rover is in testing at NASA's Jet Propulsion Laboratory, Pasadena, California., which manages the Mars 2020 project for the NASA Science Mission Directorate, Washington. The mission will launch in July 2020 and land on Mars in February 2021 at the Jezero Crater.
Source: Lockheed Martin
Thursday, December 12, 2019
Hello, Nightingale: OSIRIS-REx Has Found Its Landing Spot on Asteroid Bennu!
NASA / Goddard / University of Arizona
X Marks the Spot: NASA Selects Site for Asteroid Sample Collection (Press Release)
After a year scoping out asteroid Bennu’s boulder-scattered surface, the team leading NASA’s first asteroid sample return mission has officially selected a sample collection site.
The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-Rex) mission team concluded a site designated “Nightingale” – located in a crater high in Bennu’s northern hemisphere – is the best spot for the OSIRIS-REx spacecraft to snag its sample.
The OSIRIS-REx team spent the past several months evaluating close-range data from four candidate sites in order to identify the best option for the sample collection. The candidate sites – dubbed Sandpiper, Osprey, Kingfisher, and Nightingale – were chosen for investigation because, of all the potential sampling regions on Bennu, these areas pose the fewest hazards to the spacecraft’s safety while still providing the opportunity for great samples to be gathered.
“After thoroughly evaluating all four candidate sites, we made our final decision based on which site has the greatest amount of fine-grained material and how easily the spacecraft can access that material while keeping the spacecraft safe,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona in Tucson. “Of the four candidates, site Nightingale best meets these criteria and, ultimately, best ensures mission success.”
Site Nightingale is located in a northern crater 230 feet (70 meters) wide. Nightingale’s regolith – or rocky surface material – is dark, and images show that the crater is relatively smooth. Because it is located so far north, temperatures in the region are lower than elsewhere on the asteroid and the surface material is well-preserved. The crater also is thought to be relatively young, and the regolith is freshly exposed. This means the site would likely allow for a pristine sample of the asteroid, giving the team insight into Bennu’s history.
Although Nightingale ranks the highest of any location on Bennu, the site still poses challenges for sample collection. The original mission plan envisioned a sample site with a diameter of 164 feet (50 meters). While the crater that hosts Nightingale is larger than that, the area safe enough for the spacecraft to touch is much smaller – approximately 52 feet (16 meters) in diameter, resulting in a site that is only about one-tenth the size of what was originally envisioned. This means the spacecraft has to very accurately target Bennu’s surface. Nightingale also has a building-size boulder situated on the crater’s eastern rim, which could pose a hazard to the spacecraft while backing away after contacting the site.
The mission also selected site Osprey as a backup sample collection site. The spacecraft has the capability to perform multiple sampling attempts, but any significant disturbance to Nightingale’s surface would make it difficult to collect a sample from that area on a later attempt, making a backup site necessary. The spacecraft is designed to autonomously “wave-off” from the site if its predicted position is too close to a hazardous area. During this maneuver, the exhaust plumes from the spacecraft’s thrusters could potentially disturb the surface of the site, due to the asteroid’s microgravity environment. In any situation where a follow-on attempt at Nightingale is not possible, the team will try to collect a sample from site Osprey instead.
"Bennu has challenged OSIRIS-REx with extraordinarily rugged terrain," said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center. "The team has adapted by employing a more accurate, though more complex, optical navigation technique to be able to get into these small areas. We'll also arm OSIRIS-REx with the capability to recognize if it is on course to touch a hazard within or adjacent to the site and wave-off before that happens."
With the selection of final primary and backup sites, the mission team will undertake further reconnaissance flights over Nightingale and Osprey, beginning in January and continuing through the spring. Once these flyovers are complete, the spacecraft will begin rehearsals for its first "touch-and-go" sample collection attempt, which is scheduled for August. The spacecraft will depart Bennu in 2021 and is scheduled to return to Earth in September 2023.
NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Denver built the spacecraft and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
****
Friday, November 15, 2019
Rest In Peace, Mr. Lewis.
Last week, I found out that one of my former high school teachers, Marcus Lewis, had passed away. Mr. Lewis taught British Literature during my senior year at Bishop Amat Memorial...and was one of my favorite instructors there. I was a senior during the 1997-'98 school year—and I recall that Mr. Lewis would give my Brit Lit class extra credit if we watched the movie Titanic (which was released in theaters on December 19, 1997) and gave him our ticket stubs for proof of viewing afterwards! So cool. Mr. Lewis also worked at a Barnes & Noble bookstore during that time, and was able to buy me the James Cameron's Titanic movie book (which was sold out everywhere else) shown below. Of course I paid him back.
Mr. Lewis' passing took place about eight months after my 8th grade teacher Mrs. Maria Ventura left this world. May they both rest in peace.
Thursday, November 14, 2019
SOLAR PROBE PLUS Update: NASA Releases First Round of Data from the Parker Spacecraft to the Public...
NASA / Naval Research Laboratory / Parker Solar Probe
First Parker Solar Probe Science Data Released to Public (News Release - November 12)
On Nov. 12, 2019, NASA’s Parker Solar Probe team released scientific data collected during the spacecraft's first two solar orbits to the general public.
Data can be accessed through the NASA Space Physics Data Facility, the Solar Data Analysis Center, the APL Parker Solar Probe Gateway, and the Science Operation Centers of the four science investigation teams (the University of California, Berkeley; Princeton University; Harvard-Smithsonian Center for Astrophysics; and Naval Research Laboratory.) The newly released data, in the form of data files and graphical displays, is available for interested public users to manipulate, analyze, and plot in any way they choose.
The released encounter data encompasses measurements made during the first two solar encounters, spanning the time between Oct. 31 and Nov. 12, 2018, and March 30 and April 19, 2019, when the spacecraft was within 0.25 AU of the Sun, as well as data collected at farther distances. One AU, or astronomical unit, is about 93 million miles, the average distance between the Sun and Earth.
Science teams led by principal investigators from partner institutions have been busy poring over the wealth of information collected by Parker Solar Probe in preparation for the mission's first science results, to be released later this year. The four instrument suites onboard – FIELDS, ISʘIS, SWEAP, and WISPR – have been observing the characteristics of the solar wind (fields, waves, flows, and particles) in the immediate environment surrounding the Sun, called the corona.
“Parker Solar Probe is crossing new frontiers of space exploration, giving us so much new information about the Sun,” said Parker Solar Probe Project Scientist Nour E. Raouafi, from the Johns Hopkins Applied Physics Laboratory, or APL, in Laurel, Maryland, which manages the mission for NASA. “Releasing this data to the public will allow them not only to contribute to the success of the mission along with the scientific community, but also to raise the opportunity for new discoveries to the next level.”
With three of 24 planned solar orbits under its belt, Parker Solar Probe will continue to get closer to the Sun in the coming years, eventually swooping to within 4 million miles of the Sun's surface, facing heat and radiation like no spacecraft before it. The mission seeks to provide new data on solar activity and how the solar corona works, which contributes significantly to our ability to forecast major space weather events that impact life on Earth. The mission launched in 2018 and is slated to perform its primary science mission until 2025.
Source: Johns Hopkins Applied Physics Laboratory
****
Wednesday, November 13, 2019
Farewell, Asteroid Ryugu: Hayabusa2 Is Now Headed Back to Earth!
JAXA, Chiba Institute of Technology and collaborators
Hayabusa2 Departs from Ryugu (Press Release)
JAXA confirmed Hayabusa2, JAXA's asteroid explorer, left the target asteroid Ryugu.
On November 13, 2019, JAXA operated Hayabusa2 chemical propulsion thrusters for the spacecraft's orbit control. The confirmation of the Hayabusa2 departure made at 10:05 a.m. (Japan Standard Time, JST) was based on the following data analyses:
·The thruster operation of Hayabusa2 occurred nominally
·The velocity leaving from Ryugu is approximately 9.2 cm/s
·The status of Hayabusa2 is normal
We are planning to conduct performance tests of onboard instruments, including the electric propulsion system, for the return to Earth.
Source: Japan Aerospace Exploration Agency
Tuesday, November 12, 2019
New Horizons Update: Ultima Thule Now Has a New Name!
NASA / Johns Hopkins Applied Physics Laboratory / Southwest Research Institute, National Optical Astronomy Observatory
Far, Far Away in the Sky: New Horizons Kuiper Belt Flyby Object Officially Named 'Arrokoth' (News Release)
In a fitting tribute to the farthest flyby ever conducted by spacecraft, the Kuiper Belt object 2014 MU69 has been officially named Arrokoth, a Native American term meaning “sky” in the Powhatan/Algonquian language.
With consent from Powhatan Tribal elders and representatives, NASA’s New Horizons team – whose spacecraft performed the record-breaking reconnaissance of Arrokoth four billion miles from Earth – proposed the name to the International Astronomical Union and Minor Planets Center, the international authority for naming Kuiper Belt objects. The name was announced at a ceremony today at NASA Headquarters in Washington, DC.
“The name ‘Arrokoth’ reflects the inspiration of looking to the skies and wondering about the stars and worlds beyond our own,” said Alan Stern, New Horizons principal investigator from Southwest Research Institute, Boulder, Colorado. “That desire to learn is at the heart of the New Horizons mission, and we’re honored to join with the Powhatan community and people of Maryland in this celebration of discovery.”
New Horizons launched in January 2006; it then zipped past Jupiter for a gravity boost and scientific studies in February 2007 and conducted an historic first flight through the Pluto system on July 14, 2015. The spacecraft continued its unparalleled voyage on New Year’s 2019 with the exploration of Arrokoth – which the team had nicknamed “Ultima Thule” -- a billion miles beyond Pluto, and the farthest flyby ever conducted.
Arrokoth is one of the thousands of known small icy worlds in the Kuiper Belt, the vast “third zone” of the solar system beyond the inner terrestrial planets and the outer gas giant planets. It was discovered in 2014 by a New Horizons team – which included Marc Buie, of the Southwest Research Institute – using the powerful Hubble Space Telescope.
“Data from the newly-named Arrokoth, has given us clues about the formation of planets and our cosmic origins,” said Buie. “We believe this ancient body, composed of two distinct lobes that merged into one entity, may harbor answers that contribute to our understanding of the origin of life on Earth.”
In accordance with IAU naming conventions, the discovery team earned the privilege of selecting a permanent name for the celestial body. The team used this convention to associate the culture of the native peoples who lived in the region where the object was discovered; in this case, both the Hubble Space Telescope (at the Space Telescope Science Institute) and the New Horizons mission (at the Johns Hopkins Applied Physics Laboratory) are operated out of Maryland — a tie to the significance of the Chesapeake Bay region to the Powhatan people.
“We graciously accept this gift from the Powhatan people,” said Lori Glaze, director of NASA’s Planetary Science Division. “Bestowing the name Arrokoth signifies the strength and endurance of the indigenous Algonquian people of the Chesapeake region. Their heritage continues to be a guiding light for all who search for meaning and understanding of the origins of the universe and the celestial connection of humanity.”
The Pamunkey Reservation in King William County, Virginia, is the oldest American Indian reservation in the U.S. -- formed by a treaty with England in the 1600s and finally receiving federal recognition in July 2015. The Pamunkey tribe and its village were significant in the original Powhatan Confederacy; today, Pamunkey tribal members work collaboratively with other Powhatan tribes in Virginia and also have descendants who are members of the Powhatan-Renape Nation in New Jersey. Many direct descendants still live on the Pamunkey reservation, while others have moved to Northern Virginia, Maryland, D.C., New York and New Jersey.
The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, designed, built and operates the New Horizons spacecraft, and manages the mission for NASA's Science Mission Directorate. NASA’s Marshall Space Flight Center (MSFC) Planetary Management Office, in Huntsville, Alabama, provides the NASA oversight for the New Horizons. The Southwest Research Institute, based in San Antonio, directs the mission via Principal Investigator Stern, and leads the science team, payload operations and encounter science planning. New Horizons is part of the New Frontiers Program managed by NASA's MSFC.
Source: NASA.Gov
Friday, October 25, 2019
NASA to Launch a Rover That Will Explore the South Pole of the Moon in 2022...
NASA Ames / Daniel Rutter
New VIPER Lunar Rover to Map Water Ice on the Moon (News Release)
NASA is sending a mobile robot to the South Pole of the Moon to get a close-up view of the location and concentration of water ice in the region and for the first time ever, actually sample the water ice at the same pole where the first woman and next man will land in 2024 under the Artemis program.
About the size of a golf cart, the Volatiles Investigating Polar Exploration Rover, or VIPER, will roam several miles, using its four science instruments — including a 1-meter drill — to sample various soil environments. Planned for delivery to the lunar surface in December 2022, VIPER will collect about 100 days of data that will be used to inform the first global water resource maps of the Moon.
“The key to living on the Moon is water – the same as here on Earth,” said Daniel Andrews, the project manager of the VIPER mission and director of engineering at NASA’s Ames Research Center in Silicon Valley. “Since the confirmation of lunar water-ice ten years ago, the question now is if the Moon could really contain the amount of resources we need to live off-world. This rover will help us answer the many questions we have about where the water is, and how much there is for us to use.”
NASA's Artemis program begins a new era where robots and humans working together will push the boundaries of what’s possible in space exploration. In collaboration with commercial and international partners, NASA’s ambition is to achieve a long-term sustainable presence on the Moon – enabling humans to go on to Mars and beyond.
Scientists had long considered the lunar poles as promising spots to find water ice – a resource of direct value for humans that could provide oxygen to breathe and hydrogen and oxygen to fuel future landers and rockets. The Moon’s tilt creates permanently shadowed regions where water ice from comet and meteor impacts, as well as the Sun’s interaction with the lunar soil, can collect without being melted by sunlight. In 2009, NASA crashed a rocket (as part of the ongoing Lunar Reconnaissance Orbiter mission) into a large crater near the South Pole and directly detected the presence of water ice. Data from this mission and other orbiters have confirmed that the Moon has reservoirs of water ice, potentially amounting to millions of tons. Now, we need to understand the location and nature of the water and other potentially accessible resources to aid in planning how to extract and collect it.
“It’s incredibly exciting to have a rover going to the new and unique environment of the South Pole to discover where exactly we can harvest that water,” said Anthony Colaprete, VIPER’s project scientist. “VIPER will tell us which locations have the highest concentrations and how deep below the surface to go to get access to water.”
To unravel the mysteries of the Moon’s South Pole, the rover will collect data on different kinds of soil environments affected by light and temperature – those in complete darkness, occasional light and in direct sunlight. By collecting data on the amount of water and other materials in each, NASA can map out where else water likely lies across the Moon.
As the rover drives across the surface, it will use the Neutron Spectrometer System, known as NSS, to detect “wet” areas below the surface for further investigation. VIPER will then stop and deploy a drill, The Regolith and Ice Drill for Exploring New Terrain, or TRIDENT, developed with Honeybee Robotics, to dig up soil cuttings from up to a meter beneath the surface. These drill samples will then be analyzed by two instruments: the Mass Spectrometer Observing Lunar Operations, or MSolo, developed out of NASA’s Kennedy Space Center; and the Near InfraRed Volatiles Spectrometer System, known as NIRVSS, developed by Ames. MSolo and NIRVSS will determine the composition and concentration of potentially accessible resources, including water, that were brought up by TRIDENT.
VIPER is a collaboration within and beyond the agency. VIPER is part of the Lunar Discovery and Exploration Program managed by the Science Mission Directorate at NASA Headquarters. Ames is managing the rover project, leading the mission’s science, systems engineering, real-time rover surface operations and software development. The hardware for the rover is being designed by the Johnson Space Center, while the instruments are provided by Ames, Kennedy, and commercial partner, Honeybee Robotics. The spacecraft lander and launch vehicle that will deliver VIPER to the surface of the Moon, will be provided through NASA’s Commercial Lunar Payload Services (CLPS) contract, delivering science and technology payloads to and near the Moon.
Source: NASA.Gov
****
NASA / Johnson Space Center
Monday, October 21, 2019
Hubble's Successor Finally Looks Like Its True Self...
NASA / Chris Gunn
NASA’s James Webb Space Telescope Clears Critical Sunshield Deployment Testing (News Release)
The sunshield for NASA’s James Webb Space Telescope has passed a test critical to preparing the observatory for its 2021 launch. Technicians and engineers fully deployed and tensioned each of the sunshield's five layers, successfully putting the sunshield into the same position it will be in a million miles from Earth.
“This was the first time that the sunshield has been deployed and tensioned by the spacecraft electronics and with the telescope present above it. The deployment is visually stunning as a result, and it was challenging to accomplish," said James Cooper, NASA’s Webb Telescope Sunshield Manager at NASA’s Goddard Space Flight Center, Greenbelt, Maryland.
To observe distant parts of the universe humans have never seen before, the Webb observatory is equipped with an arsenal of revolutionary technologies, making it the most sophisticated and complex space science telescope ever created. Among the most challenging of these technologies is the five-layer sunshield, designed to protect the observatory's mirrors and scientific instruments from light and heat, primarily from the Sun.
As a telescope optimized for infrared light, it is imperative that Webb’s optics and sensors remain extremely cold, and its sunshield is key for regulating temperature. Webb requires a successful sunshield deployment on orbit to meet its science goals.
The sunshield separates the observatory into a warm side that always faces the Sun (thermal models show the maximum temperature of the outermost layer is 383 Kelvin or approximately 230 degrees Fahrenheit), and a cold side that always faces deep space (with the coldest layer having a modeled minimum temp of 36 Kelvin, or around minus 394 degrees Fahrenheit). The oxygen present in Earth’s atmosphere would freeze solid at the temperatures experienced on the cold side of the sunshield, and an egg could easily be boiled with the heat encountered on the warm end.
Webb has passed other deployment tests during its development. Equally as important were the successful disposition of issues uncovered by those earlier deployments and the spacecraft element environmental testing. As before, technicians used gravity-offsetting pulleys and weights to simulate the zero-g environment it will experience in space. By carefully monitoring the deployment and tensioning of each individual layer, Webb technicians ensure that once on orbit, they will function flawlessly.
"This test showed that the sunshield system survived spacecraft element environmental testing, and taught us about the interfaces and interactions between the telescope and sunshield parts of the observatory," Cooper added. "Many thanks to all the engineers and technicians for their perseverance, focus and countless hours of effort to achieve this milestone.”
The sunshield consists of five layers of a polymer material called Kapton. Each layer is coated with vapor-deposited aluminum, to reflect the Sun’s heat into space. The two hottest sun-facing layers also have a "doped-silicon" (or treated silicon) coating to protect them from the Sun’s intense ultraviolet radiation.
To collect light from some of the first stars and galaxies to have formed after the Big Bang, the telescope needed both the largest mirror ever to be launched into space, and the sunshield that has the wingspan of an entire tennis court. Because of the telescope’s size, shape and thermal performance requirements, the sunshield must be both big and complex. But it also has to fit inside a standard 16-foot-(5-meter)-diameter rocket payload fairing, and also reliably deploy into a specific shape, while experiencing the absence of gravity, without error.
Following Webb’s successful sunshield test, team members will begin the long process of perfectly folding the sunshield back into its stowed position for flight, which occupies a much smaller space than when it is fully deployed. Then, the observatory will be subjected to comprehensive electrical tests and one more set of mechanical tests that emulate the launch vibration environment, followed by one final deployment and stowing cycle on the ground, before its flight into space.
Webb will be the world's premier space science observatory. It will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
Source: NASA.Gov
****
NASA / Chris Gunn
Thursday, September 26, 2019
Remembering a Fellow Lancer...
Rest In Peace, Mariana. Earlier today, I found out on Facebook that Mariana Baserga—my former classmate from Bishop Amat Memorial High School—passed away after fighting a brave battle with cancer. I was absolutely devastated to hear this. Even though I wasn't a close friend of Mariana when we were in high school from 1994 to '98, I chatted with her during our 20-year high school reunion that took place in Newport Beach, CA almost a year ago.. It was a memorable time...and it's gonna be heartbreaking not to see Mariana around when my fellow Lancers (that's the name of our high school mascot) convene for our 30-year reunion in 2028. My condolences to Mariana's family.
Thursday, August 29, 2019
The First Interplanetary Aircraft Has Been Attached to America's Next Red Planet Rover...
NASA / JPL - Caltech
NASA's Mars Helicopter Attached to Mars 2020 Rover (News Release - August 28)
Engineers attached NASA's Mars Helicopter, which will be the first aircraft to fly on another planet, to the belly of the Mars 2020 rover today in the High Bay 1 clean room at the Jet Propulsion Laboratory near Pasadena, California.
The twin-rotor, solar-powered helicopter was connected, along with the Mars Helicopter Delivery System, to a plate on the rover's belly that includes a cover to shield the helicopter from debris during entry, descent and landing. The helicopter will remain encapsulated after landing, deploying to the surface once a suitable area to conduct test flights is found at Jezero Crater, the rover's destination.
The Mars Helicopter is considered a high-risk, high-reward technology demonstration. If the small craft encounters difficulties, the science-gathering of the Mars 2020 mission won't be impacted. If the helicopter does take flight as designed, future Mars missions could enlist second-generation helicopters to add an aerial dimension to their explorations.
"Our job is to prove that autonomous, controlled flight can be executed in the extremely thin Martian atmosphere," said JPL's MiMi Aung, the Mars Helicopter project manager. "Since our helicopter is designed as a flight test of experimental technology, it carries no science instruments. But if we prove powered flight on Mars can work, we look forward to the day when Mars helicopters can play an important role in future explorations of the Red Planet."
Along with investigating difficult-to-reach destinations such as cliffs, caves and deep craters, they could carry small science instruments or act as scouts for human and robotic explorers. The agency intends to establish a sustained human presence on and around the Moon through NASA's Artemis lunar exploration plans, using the Moon as a stepping stone to putting humans on Mars.
"The Wright Brothers flew the first airplane at Kitty Hawk, North Carolina, but they built it in Dayton," said NASA Administrator Jim Bridenstine. "The Mars Helicopter, destined to be the first aircraft to fly on another world, was built in Pasadena, California. Joined now to the 2020 rover, it is yet another example of how NASA's Artemis generation is expanding humanity's reach in our solar system."
"With this joining of two great spacecraft, I can say definitively that all the pieces are in place for a historic mission of exploration," said Thomas Zurbuchen, associate administrator of the Science Mission Directorate at NASA's headquarters in Washington. "Together, Mars 2020 and the Mars Helicopter will help define the future of science and exploration of the Red Planet for decades to come."
The Mars 2020 rover, with the Mars Helicopter aboard, will launch on a United Launch Alliance Atlas V rocket in July 2020 from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. When it lands at Jezero Crater on Feb. 18, 2021, the rover will be the first spacecraft in the history of planetary exploration with the ability to accurately retarget its point of touchdown during the landing sequence.
JPL is building and will manage operations of the Mars 2020 rover and the Mars Helicopter for NASA. NASA's Launch Services Program, based at the agency's Kennedy Space Center in Florida, is responsible for launch management. Lockheed Martin Space provided the Mars Helicopter Delivery System.
To submit your name to travel to Mars with NASA's 2020 mission and obtain a souvenir boarding pass to the Red Planet, go here by Sept. 30, 2019:
https://go.nasa.gov/Mars2020Pass
Source: Jet Propulsion Laboratory
****
NASA / JPL - CalTech
Wednesday, August 28, 2019
Hubble's Successor Has Finally Gained Its True Form...
NASA / Chris Gunn
Connecting the Webb (News Release)
Reaching a major milestone, engineers have successfully connected the two halves of the NASA/ESA/CSA James Webb Space Telescope for the first time at Northrop Grumman’s facilities in Redondo Beach, California. Once it reaches space, Webb will explore the cosmos using infrared light, from planets and moons within our solar system to the most ancient and distant galaxies.
To combine both halves of Webb, engineers carefully lifted the telescope (which includes the mirrors and science instruments) above the already-combined sunshield and spacecraft using a crane. Team members slowly guided the telescope into place, ensuring that all primary points of contact were perfectly aligned and seated properly. The observatory has been mechanically connected; next steps will be to electrically connect the halves, and then test the electrical connections.
Later, engineers will fully deploy the intricate five-layer sunshield, which is designed to keep Webb's mirrors and scientific instruments cold by blocking infrared light from Earth, the Moon and Sun. The ability of the sunshield to deploy to its correct shape is critical to mission success.
Webb is scheduled for launch on a European Ariane 5 rocket from French Guiana in March 2021.
The James Webb Space Telescope is an international project led by NASA with its partners, ESA and the Canadian Space Agency. As part of its contribution to the project, ESA provides the NIRSpec instrument, the Optical Bench Assembly of the MIRI instrument, the Ariane 5 launcher, and staff to support mission operations at the Space Telescope Science Institute (STScI) in Baltimore, USA.
Source: European Space Agency
****
NASA / Chris Gunn
Tuesday, August 27, 2019
Flying at the Speed of Light for a Decade...
Ten Light-Years... That’s how far the Hello From Earth message has traveled since being transmitted from a giant NASA antenna in Australia to the exoplanet Gliese 581d in the summer of 2009. As of 7 PM California time tonight (12 PM Sydney time on Wednesday, August 28), the radio signal containing 25,878 goodwill text messages—including one by me—will have ventured across approximately 59 trillion miles (95 trillion kilometers) of deep space...which, as stated at the very start of this Blog entry, equals a distance of ten light-years. The signal, despite traveling 186,000 miles per second (or 671 million miles per hour, or um, 1 billion kilometers per hour), will still take about 10 years to reach the Gliese 581 star system. Happy Tuesday!
Richard Par
August 17, 2009
Monday, August 19, 2019
The Europa Clipper Moves One Step Closer to Construction...
NASA / JPL - Caltech
Europa Clipper's Mission to Jupiter’s Icy Moon Confirmed (News Release)
An icy ocean world in our solar system that could tell us more about the potential for life on other worlds is coming into focus with confirmation of the Europa Clipper mission’s next phase. The decision allows the mission to progress to completion of final design, followed by the construction and testing of the entire spacecraft and science payload.
“We are all excited about the decision that moves the Europa Clipper mission one key step closer to unlocking the mysteries of this ocean world,” said Thomas Zurbuchen, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “We are building upon the scientific insights received from the flagship Galileo and Cassini spacecraft and working to advance our understanding of our cosmic origin, and even life elsewhere.”
The mission will conduct an in-depth exploration of Jupiter's moon, Europa, and investigate whether the icy moon could harbor conditions suitable for life, honing our insights into astrobiology. To develop this mission in the most cost-effective fashion, NASA is targeting to have the Europa Clipper spacecraft complete and ready for launch as early as 2023. The agency baseline commitment, however, supports a launch readiness date by 2025.
NASA's Jet Propulsion Laboratory in Pasadena, California leads the development of the Europa Clipper mission in partnership with the Johns Hopkins University Applied Physics Laboratory for the Science Mission Directorate. Europa Clipper is managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
Source: NASA.Gov
Thursday, August 15, 2019
Support My Film THE BROKEN TABLE on Kickstarter!
ABOVE: A concept trailer for The Broken Table.
Two days ago, I launched a crowdfunding campaign for my short film The Broken Table...which is a psychological thriller about a man whose mundane act of fixing a damaged piece of furniture at home isn’t what it seems. This film has a crazy twist at the end...which I obviously won't reveal, except to say that my friends who read the script asked me, "What comes next?" For those of you reading this Blog entry, click on the link below and make a generous contribution to this project and find out! You can donate as little as $1, $5, $15 or $25—or as high as $1,000 if you wanna be credited as an Executive Producer plus get other perks! Guess with pledge level I actually want you to choose, heheh. (HINT: I don't mind putting another Producer credit at the end of the film!) Anyways, click on this link:
https://kickstarter.com/projects/parman/the-broken-table-a-short-film
The Kickstarter campaign will go from August 13 to September 13, and end at 9 AM, PDT that Friday. Even though there are still 28 days left, donate now! My crew and I are planning to shoot The Broken Table less than two months later...on November 2 and 3. So donate now!
PS: My awesome pitch video (with its random Family Guy-ish cut scenes) on the Kickstarter page won't reflect the awesomely sinister nature of the actual film! Carry on.
ABOVE: An animated promo for The Broken Table...featuring a snippet of music that will be used in the actual film.
Monday, August 12, 2019
OSIRIS-REx Update: The Search for a Good Site to Collect Samples From the Surface of Asteroid Bennu Continues...
NASA / University of Arizona
NASA Mission Selects Final Four Site Candidates for Asteroid Sample Return (Press Release)
After months grappling with the rugged reality of asteroid Bennu’s surface, the team leading NASA’s first asteroid sample return mission has selected four potential sites for the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft to “tag” its cosmic dance partner.
Since its arrival in December 2018, the OSIRIS-REx spacecraft has mapped the entire asteroid in order to identify the safest and most accessible spots for the spacecraft to collect a sample. These four sites now will be studied in further detail in order to select the final two sites – a primary and backup – in December.
The team originally had planned to choose the final two sites by this point in the mission. Initial analysis of Earth-based observations suggested the asteroid’s surface likely contains large “ponds” of fine-grain material. The spacecraft’s earliest images, however, revealed Bennu has an especially rocky terrain. Since then, the asteroid’s boulder-filled topography has created a challenge for the team to identify safe areas containing sampleable material, which must be fine enough – less than 1 inch (2.5 cm) diameter – for the spacecraft’s sampling mechanism to ingest it.
“We knew that Bennu would surprise us, so we came prepared for whatever we might find,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. “As with any mission of exploration, dealing with the unknown requires flexibility, resources and ingenuity. The OSIRIS-REx team has demonstrated these essential traits for overcoming the unexpected throughout the Bennu encounter.”
The original mission schedule intentionally included more than 300 days of extra time during asteroid operations to address such unexpected challenges. In a demonstration of its flexibility and ingenuity in response to Bennu’s surprises, the mission team is adapting its site selection process. Instead of down-selecting to the final two sites this summer, the mission will spend an additional four months studying the four candidate sites in detail, with a particular focus on identifying regions of fine-grain, sampleable material from upcoming, high-resolution observations of each site. The boulder maps that citizen science counters helped create through observations earlier this year were used as one of many pieces of data considered when assessing each site’s safety. The data collected will be key to selecting the final two sites best suited for sample collection.
In order to further adapt to Bennu’s ruggedness, the OSIRIS-REx team has made other adjustments to its sample site identification process. The original mission plan envisioned a sample site with a radius of 82 feet (25 m). Boulder-free sites of that size don’t exist on Bennu, so the team has instead identified sites ranging from 16 to 33 feet (5 to 10 m) in radius. In order for the spacecraft to accurately target a smaller site, the team reassessed the spacecraft’s operational capabilities to maximize its performance. The mission also has tightened its navigation requirements to guide the spacecraft to the asteroid’s surface, and developed a new sampling technique called “Bullseye TAG,” which uses images of the asteroid surface to navigate the spacecraft all the way to the actual surface with high accuracy. The mission’s performance so far has demonstrated the new standards are within its capabilities.
"Although OSIRIS-REx was designed to collect a sample from an asteroid with a beach-like area, the extraordinary in-flight performance to date demonstrates that we will be able to meet the challenge that the rugged surface of Bennu presents," said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. "That extraordinary performance encompasses not only the spacecraft and instruments, but also the team who continues to meet every challenge that Bennu throws at us."
The four candidate sample sites on Bennu are designated Nightingale, Kingfisher, Osprey, and Sandpiper – all birds native to Egypt. The naming theme complements the mission’s two other naming conventions – Egyptian deities (the asteroid and spacecraft) and mythological birds (surface features on Bennu).
The four sites are diverse in both geographic location and geological features. While the amount of sampleable material in each site has yet to be determined, all four sites have been evaluated thoroughly to ensure the spacecraft’s safety as it descends to, touches and collects a sample from the asteroid’s surface.
Nightingale is the northern-most site, situated at 56 degrees north latitude on Bennu. There are multiple possible sampling regions in this site, which is set in a small crater encompassed by a larger crater 459 feet (140 m) in diameter. The site contains mostly fine-grain, dark material and has the lowest albedo, or reflection, and surface temperature of the four sites.
Kingfisher is located in a small crater near Bennu’s equator at 11 degrees north latitude. The crater has a diameter of 26 feet (8 m) and is surrounded by boulders, although the site itself is free of large rocks. Among the four sites, Kingfisher has the strongest spectral signature for hydrated minerals.
Osprey is set in a small crater, 66 feet (20 m) in diameter, which is also located in Bennu’s equatorial region at 11 degrees north latitude. There are several possible sampling regions within the site. The diversity of rock types in the surrounding area suggests that the regolith within Osprey may also be diverse. Osprey has the strongest spectral signature of carbon-rich material among the four sites.
Sandpiper is located in Bennu’s southern hemisphere, at 47 degrees south latitude. The site is in a relatively flat area on the wall of a large crater 207 ft (63 m) in diameter. Hydrated minerals are also present, which indicates that Sandpiper may contain unmodified water-rich material.
This fall, OSIRIS-REx will begin detailed analyses of the four candidate sites during the mission’s reconnaissance phase. During the first stage of this phase, the spacecraft will execute high passes over each of the four sites from a distance of 0.8 miles (1.29 km) to confirm they are safe and contain sampleable material. Closeup imaging also will map the features and landmarks required for the spacecraft’s autonomous navigation to the asteroid’s surface. The team will use the data from these passes to select the final primary and backup sample collection sites in December.
The second and third stages of reconnaissance will begin in early 2020 when the spacecraft will perform passes over the final two sites at lower altitudes and take even higher resolution observations of the surface to identify features, such as groupings of rocks that will be used to navigate to the surface for sample collection. OSIRIS-REx sample collection is scheduled for the latter half of 2020, and the spacecraft will return the asteroid samples to Earth on Sept. 24, 2023.
Goddard provides overall mission management, systems engineering, and safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
****
Monday, August 05, 2019
Testing the Eyes on America's Next Mars Rover...
NASA / JPL - Caltech
NASA 'Optometrists' Verify Mars 2020 Rover's 20/20 Vision (News Release)
Equipped with visionary science instruments, the Mars 2020 rover underwent an "eye" exam after several cameras were installed on it. The rover contains an armada of imaging capabilities, from wide-angle landscape cameras to narrow-angle high-resolution zoom lens cameras.
"We completed the machine-vision calibration of the forward-facing cameras on the rover," said Justin Maki, chief engineer for imaging and the imaging scientist for Mars 2020 at JPL. "This measurement is critical for accurate stereo vision, which is an important capability of the vehicle."
To perform the calibration, the 2020 team imaged target boards that feature grids of dots, placed at distances ranging from 1 to 44 yards (1 to 40 meters) away. The target boards were used to confirm that the cameras meet the project's requirements for resolution and geometric accuracy. The cameras tested included two Navcams, four Hazcams, the SuperCam and the two Mastcam-Z cameras.
"We tested every camera on the front of the rover chassis and also those mounted on the mast," said Maki. "Characterizing the geometric alignment of all these imagers is important for driving the vehicle on Mars, operating the robotic arm and accurately targeting the rover's laser."
In the coming weeks, the imagers on the back of the rover body and on the turret at the end of the rover's arm will undergo similar calibration.
Mounted on the rover's remote sensing mast, the Navcams (navigation cameras) will acquire panoramic 3D image data that will support route planning, robotic-arm operations, drilling and sample acquisition. The Navcams can work in tandem with the Hazcams (hazard-avoidance cameras) mounted on the lower portion of the rover chassis to provide complementary views of the terrain to safeguard the rover against getting lost or crashing into unexpected obstacles. They'll be used by software enabling the Mars 2020 rover to perform self-driving over the Martian terrain.
Along with its laser and spectrometers, SuperCam's imager will examine Martian rocks and soil, seeking organic compounds that could be related to past life on Mars. The rover's two Mastcam-Z high-resolution cameras will work together as a multispectral, stereoscopic imaging instrument to enhance the Mars 2020 rover's driving and core-sampling capabilities. The Mastcam-Z cameras will also enable science team members to observe details in rocks and sediment at any location within the rover's field of view, helping them piece together the planet's geologic history.
JPL is building and will manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency's headquarters in Washington. NASA will use Mars 2020 and other missions, including to the Moon, to prepare for human exploration of the Red Planet. The agency intends to establish a sustained human presence on and around the Moon by 2028 through NASA's Artemis lunar exploration plans.
To submit your name to travel to Mars with NASA's 2020 mission and obtain a souvenir boarding pass to the Red Planet, go here by Sept. 30, 2019:
https://go.nasa.gov/Mars2020Pass
Source: Jet Propulsion Laboratory
Wednesday, July 31, 2019
LightSail 2's Mission Has Achieved Its Main Objective!
The Planetary Society
LightSail 2 Spacecraft Successfully Demonstrates Flight by Light (Press Release)
Pasadena, CA — Years of computer simulations. Countless ground tests. They've all led up to now. The Planetary Society's crowdfunded LightSail 2 spacecraft is successfully raising its orbit solely on the power of sunlight.
Since unfurling the spacecraft's silver solar sail last week, mission managers have been optimizing the way the spacecraft orients itself during solar sailing. After a few tweaks, LightSail 2 began raising its orbit around the Earth. In the past 4 days, the spacecraft has raised its orbital high point, or apogee, by about 2 kilometers. The perigee, or low point of its orbit, has dropped by a similar amount, which is consistent with pre-flight expectations for the effects of atmospheric drag on the spacecraft. The mission team has confirmed the apogee increase can only be attributed to solar sailing, meaning LightSail 2 has successfully completed its primary goal of demonstrating flight by light for CubeSats.
"We're thrilled to announce mission success for LightSail 2," said LightSail program manager and Planetary Society chief scientist Bruce Betts. "Our criteria was to demonstrate controlled solar sailing in a CubeSat by changing the spacecraft’s orbit using only the light pressure of the Sun, something that’s never been done before. I'm enormously proud of this team. It's been a long road and we did it."
The milestone makes LightSail 2 the first spacecraft to use solar sailing for propulsion in Earth orbit, the first small spacecraft to demonstrate solar sailing, and just the second-ever solar sail spacecraft to successfully fly, following Japan's IKAROS, which launched in 2010. LightSail 2 is also the first crowdfunded spacecraft to successfully demonstrate a new form of propulsion.
"For The Planetary Society, this moment has been decades in the making," said Planetary Society CEO Bill Nye. "Carl Sagan talked about solar sailing when I was in his class in 1977. But the idea goes back at least to 1607, when Johannes Kepler noticed that comet tails must be created by energy from the Sun. The LightSail 2 mission is a game-changer for spaceflight and advancing space exploration."
On Monday, LightSail 2 sent home a new full-resolution image captured by its camera during solar sail deployment. The perspective is opposite to last week’s full-resolution image and shows the sail more fully deployed. LightSail 2's aluminized Mylar sail shines against the blackness of space, with the Sun peeking through near a sail boom.
The mission team will continue raising LightSail 2's orbit for roughly a month, until the perigee decreases to the point where atmospheric drag overcomes the thrust from solar sailing. During the orbit-raising period, the team will continue optimizing the performance of the solar sail.
"We've been working since sail deployment to refine the way the spacecraft tracks the Sun," said LightSail 2 project manager Dave Spencer. "The team has done a great job getting us to the point where we can declare mission success. Moving ahead, we're going to continue working to tune the sail control performance and see how much we can raise apogee over time."
One such refinement involves LightSail 2's single momentum wheel, which rotates the spacecraft broadside and then edge-on to the Sun each orbit to turn the thrust from solar sailing on and off. Momentum wheels can “saturate,” hitting predefined speed limits, after which they are no longer effective at rotating the spacecraft. Most spacecraft use chemical thrusters to desaturate momentum wheels; LightSail 2 relies on electromagnetic torque rods, which orient the spacecraft by pushing against Earth's magnetic field.
LightSail 2’s momentum wheel currently reaches its saturation limit a couple of times per day, and desaturating the wheel temporarily takes the spacecraft out of its proper orientation for solar sailing. The mission team already applied a software update that increased the time between saturation events, and is also working to automate the desaturation process. Both refinements should result in improved solar sailing performance.
After LightSail 2's month-long orbit raising phase, the spacecraft will begin to deorbit, eventually reentering the atmosphere in roughly a year. The aluminized Mylar sail, about the size of a boxing ring, may currently be visible for some observers at dusk and dawn. The Planetary Society's mission control dashboard shows upcoming passes based on user location, and includes a link to a page that highlights passes when the sail is more likely to be visible.
Roughly 50,000 Planetary Society members and private citizens from more than 100 countries, as well as foundations and corporate partners, donated to the LightSail 2 mission, which cost $7 million from 2009 through March 2019.
"LightSail 2 proves the power of public support," said Planetary Society COO Jennifer Vaughn. "This moment could mark a paradigm shift that opens up space exploration to more players. It amazes me that 50,000 people came together to fly a solar sail. Imagine if that number became 500,000 or 5 million. It’s a thrilling concept."
The Planetary Society shares LightSail program data with other organizations so that solar sail technology can be applied to future space exploration missions. The Society presented initial LightSail 2 results this week at the 5th International Symposium on Solar Sailing in Aachen, Germany. Results are also being shared with NASA's NEA Scout mission, which is launching a solar sail-powered CubeSat to visit a near-Earth asteroid as early as next year.
LightSail 2 is one of several Planetary Society science and technology projects that aim to advance space science and exploration. Earlier this month, NASA chose PlanetVac, a Society-funded technology built by Honeybee Robotics that simplifies the process of collecting samples from other worlds, to fly to the Moon as part of the agency's Commercial Lunar Payload Services (CLPS) program.
The LightSail program began in 2009 under the direction of Planetary Society co-founder Louis Friedman, following the launch of Cosmos 1, the world's first solar sail that did not reach orbit. Friedman and Society co-founders Carl Sagan and Bruce Murray championed the idea of solar sailing more than 4 decades ago with a proposed solar sail mission to Halley's Comet.
Source: The Planetary Society
****
The Planetary Society
Wednesday, July 24, 2019
LightSail 2 Has Spread Its Wings in Orbit!
The Planetary Society
LightSail 2 Successfully Deploys Solar Sail (Press Release)
The Planetary Society’s LightSail 2 spacecraft has successfully deployed the large, aluminized Mylar sail it will use to raise its orbit solely with sunlight.
Flight controllers at Cal Poly San Luis Obispo in California commanded the spacecraft to deploy its solar sails yesterday at about 11:47 PDT (18:47 UTC). Images captured during the deployment sequence and downloaded today show the 32-square-meter sail, which is about the size of a boxing ring, deploying as the spacecraft flew south of the continental United States.
Sail deployment marks a major milestone for the LightSail 2 mission, which aims to demonstrate solar sailing as a viable method of propulsion for CubeSats—small, standardized satellites that have lowered the cost of space exploration.
“Yesterday, we successfully set sail on beams of sunlight,” said Bill Nye, CEO of The Planetary Society. “Thanks to our team and our tens of thousands of supporters around the world, the dream started by The Planetary Society’s founders more than 4 decades ago has taken flight.”
Bruce Betts, Planetary Society chief scientist and LightSail program manager, added, “We’re ecstatic! The mission team has worked for years to get to this moment when we can start solar sailing.”
Following the start of sail deployment on 23 July, telemetry from LightSail 2 showed the spacecraft’s small motor was rotating properly, extending four, 4-meter cobalt-alloy booms from their central spindle. The booms unwind like carpenter’s tape measures and are attached to 4 triangular sail sections that together form the square solar sail.
Though the motor activity itself was a good indicator of success, confirmation that the sails deployed successfully was only possible via imagery from LightSail 2’s dual cameras. The cameras have 185-degree fields of view, and together can image the entire sail from the main LightSail bus, which is about the size of a loaf of bread.
“The successful deployment of the solar sail and the onset of sail control completes our critical post-launch phase,” said LightSail 2 project manager David Spencer. “Now we are prepared for the solar sail's mission, to track how the orbit changes and evaluate solar sailing performance.”
The deployment milestone comes 4 weeks after LightSail 2 launched from Kennedy Space Center, Florida aboard a SpaceX Falcon Heavy rocket, and 3 weeks after the Georgia Tech student-built Prox-1 spacecraft deployed LightSail 2 into orbit. The mission team spent a week checking out the spacecraft’s systems before rescheduling sail deployment to allow extra time for testing and tuning the attitude control system.
Preliminary data shows LightSail 2 is already turning its solar sail broadside to the Sun once per orbit, giving the spacecraft a gentle push no stronger than the weight of a paperclip. Solar photons have no mass, but they have momentum, and as they reflect off the solar sail, some of that momentum is transferred and creates thrust. While this thrust is slight, it is continuous and over time will raise LightSail 2’s orbit.
The orbit-raising portion of the mission will last about 1 month. LightSail 2 does not have the capability to circularize its orbit—as one side of the spacecraft’s orbit raises due to solar sailing, the other side will dip lower into Earth’s atmosphere, until atmospheric drag overcomes the slight force from solar sailing. LightSail 2 is expected to reenter the atmosphere in roughly 1 year.
Source: The Planetary Society
****
The Planetary Society
Wednesday, July 17, 2019
Only 365 Days Till America's Next Robotic Rover Heads to the Red Planet...
NASA / JPL - Caltech
Mars 2020 Rover: T-Minus One Year and Counting (News Release)
The launch period for NASA's Mars 2020 rover opens exactly one year from today, July 17, 2020, and extends through Aug. 5, 2020. The mission will launch from Cape Canaveral Air Force Station in Florida and land at Mars' Jezero Crater on Feb. 18, 2021.
"Back when we started this project in 2013, we came up with a timeline to chart mission progress," said John McNamee, Mars 2020 project manager at NASA's Jet Propulsion Laboratory near Pasadena, California. "That every single major spacecraft component on a project with this level of innovation is synching right now with that timeline is a testament to the innovation and perseverance of a great team."
In this image, taken on July 11, 2019, engineers at JPL install a sensor-filled turret on the end of the rover's 7-foot-long (2.1-meter-long) robotic arm. The rover's turret includes HD cameras, the Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) science instrument, the Planetary Instrument for X-ray Lithochemistry (PIXL), and a percussive drill and coring mechanism.
On Mars, the arm and turret will work together, allowing the rover to work as a human geologist would: by reaching out to interesting geologic features, scraping, analyzing and even collecting them for further study via Mars 2020's Sample Caching System, which includes 17 motors and will collect samples of Martian rock and soil that will be returned to Earth by a future mission.
JPL is building and will manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency's headquarters in Washington. NASA will use Mars 2020 and other missions, including to the Moon, to prepare for human exploration of the Red Planet. The agency intends to establish a sustained human presence on and around the Moon by 2028 through NASA's Artemis lunar exploration plans.
If you want to send your name to Mars with NASA's 2020 mission, you can do so until Sept. 30, 2019. Add your name to the list and obtain a souvenir boarding pass to Mars here:
https://go.nasa.gov/Mars2020Pass
Source: Jet Propulsion Laboratory
****
NASA / JPL - Caltech
Thursday, July 11, 2019
Hayabusa2 Has Collected More Samples from the Surface of Asteroid Ryugu!
JAXA
Success of the Second Touchdown of Asteroid Explorer Hayabusa 2 (Press Release)
The Japan Aerospace Exploration Agency (JAXA) performed a series of operations for the second touchdown of Asteroid Explorer Hayabusa2 on the Ryugu asteroid and the collection of its soil samples.
From the data sent from Hayabusa2, it has been confirmed that the touchdown sequence, including the discharge of a projectile for sampling, was completed successfully. Hayabusa2 is functioning normally, and thus the second touchdown ended with success.
Source: Japan Aerospace Exploration Agency
****
And there is a 10x time-lapse video captured by CAM-H images during the second target marker separation. The first frame shows the target marker immediately after separation. https://t.co/z3oZuZ85RB pic.twitter.com/Z2kimYim15
— HAYABUSA2@JAXA (@haya2e_jaxa) July 8, 2019
Saturday, July 06, 2019
The Brow Has Officially Joined the Lake Show! (PS: Screw You, Kawhi...)
Lakers Acquire Anthony Davis (Press Release)
The Los Angeles Lakers have acquired forward Anthony Davis from the New Orleans Pelicans in exchange for Lonzo Ball, Josh Hart, Brandon Ingram, the draft rights to De'Andre Hunter, two first round picks, a first-round pick swap right and cash. As part of the trade, the Lakers also sent Isaac Bonga, Jemerrio Jones, Moritz Wagner and a future second round draft pick to the Wizards, who in return, sent cash consideration to the Pelicans.
"Anthony Davis is arguably the most dominant all-around young player in today's NBA," said Lakers general manager Rob Pelinka. "Anthony represents everything we stand for, with his unwavering commitment to excellence as both a person and athlete. This is a historic moment for the Lakers franchise, and we couldn't be more proud to have him."
A three-time All-NBA First Team honoree (2015, ‘17, ‘18), six-time NBA All-Star and one-time Olympic Gold Medalist for Team USA (2012), Davis has averaged 23.7 points (.517 FG%), 10.5 rebounds, 2.4 blocks, 2.1 assists and 1.4 steals over his seven-year career in the NBA.
Last season, Davis played and started in 56 games for New Orleans, averaging 25.9 points (.517 FG%), 12.0 rebounds, 3.9 assists, 2.4 blocks and 1.6 steals in 33.0 minutes. A three-time league-leader in blocks, Davis was named to the NBA’s All-Defensive First Team in 2018, while earning Second Team honors in 2015 and 2017. Additionally, he has been voted Western Conference Player of the Month twice, coming in back-to-back months in February and March of 2018, and has earned the league’s Player of the Week award on five occasions. In 2017, he was named Most Valuable Player of the NBA All-Star Game after scoring a record 52 points in the game.
Originally from Chicago, IL, Davis was selected first overall in the 2012 NBA Draft and went on to earn First Team All-Rookie honors after totaling 20 double-doubles with averages of 13.5 points, 8.2 rebounds, 1.8 blocks, 1.2 steals and 1.0 assist per game.
In his lone season at Kentucky, Davis was voted as the consensus National Player of the Year and a First Team All-American after leading the Wildcats to the 2012 NCAA Championship. The NABC and SEC Defensive Player of the Year was also SEC Player of the Year, tallying 14.2 points (.623 FG%), 10.4 rebounds, 4.7 blocks, 1.4 steals and 1.3 assists in 40 games.
Source: Lakers.com
****
Sunday, June 30, 2019
Photos of the Day: A Boat Trip Off the Coast of Dana Point, CA...
Just thought I'd end this month with these photos—taken with my Nikon D3300 camera—that I shot during a whale-watching trip I went on almost three weeks ago (on June 11). I didn't see any whales on this excursion (though other folks on my boat say that they spotted the tail fin of a whale protruding from the water several miles away), but I did take lots of images of a pod of dolphins that surrounded my boat as it made its way out to sea. And before the boat returned to its dock at Dana Point harbor in Orange County, CA, the captain parked the vessel near a buoy where a couple of sea lions and a lone sea gull were resting on during that warm spring day. Of course, I didn't really need to tell you this when you could've just checked out all of the pics in this Blog entry!
Will I go whale-watching again, you ask? Definitely! Though I'll probably wait till October 4 (my birthday) to head back to Orange County. To paraphrase Wayne Campbell (Mike Myers) from the 1992 movie Wayne's World: "I will take whale photos with my DSLR camera... Oh yes, I will." Yep, that was cheesy. Happy Sunday!